
 

Abstract — In a mobile communication scenario handover 
functions must be supported in order to keep connection alive 
switching between different points of access. Moreover, if the 
infrastructure is composed of different networks or technologies, 
intersegment handover is necessary to roam from a component to 
another. The handover function is implemented either for 
necessity or to improve performance. Necessity means that the 
terminal must perform a handover because its current network 
connection is worsening; in the other case switching to another 
network can help to achieve better performance even if the 
current network connection is fine. Furthermore, the handover 
can be soft or hard, according to the possible overlap in the 
connection of the two segments involved. This paper illustrates the 
behavior of TCP during intersegment handovers in an 
architecture including two segments: satellite and WLAN. In 
particular, the goal is to carry out a thorough analysis of a cross-
layer based mechanism applicable during handovers to optimize 
the TCP performance. Such a mechanism is validated with an ad-
hoc software simulator written in C++ and the most meaningful 
results are shown.  

Index Terms — cross-layer, TCP, handover, multi-segment 
networks. 

I. INTRODUCTION 
owadays fast access to telecommunication networks is 
often required in mobility and along wide and 

heterogeneous geographical areas. To meet these requirements, 
broadband satellite networks, which allow a potentially global 
coverage and then an ubiquitous access to the communication 
services, and WLAN systems, which offer a much higher 
capacity and less latency but in a limited coverage area, if 
jointly used, can represent an optimal solution for mobile and 
nomadic users to uninterruptedly access the Internet. In fact, 
low delay and wide band can be provided under the WLAN 
"Hot Spot" coverage, while continuity of service can be 
guaranteed thanks to satellite links which can either provide 
capacity directly to users or to WLANs as backbone. Of 
course, efficient inter-segment handovers (HO) procedures are 
needed to switch between such different technologies [1].  

Mobile Internet Protocol and its newer realization 
Hierarchical Mobile IPv6 [2][3][4] has been identified as a 
valid approach to provide a mobility support at the IP layer, 
allowing mobile nodes to change network without changing 
their IP address to keep communication consistency. 

Unfortunately, TCP/IP protocols were not designed to 
optimally handle mobility. HO between links with different 
delay and bandwidth-delay product causes a number of 
problems such as the generation of segment bursts and delivery 
of out-of-order packets [5]. Even a good management of the 
HO at IP level does not prevent completely TCP from 
experiencing unwanted effects. In fact, both transmission errors 

and the sudden delay change cause harmful consequences to 
TCP performance: 

• Losses are misinterpreted as a congestion and thus TCP 
congestion window is dropped to a lower value [6]; 

• TCP computes the retransmission timeout (RTO) on the 
basis of measured RTT values. Then, an unexpected 
increase of the RTT could lead to an undesired RTO 
expiration with a consequent reduction of the congestion 
window to a minimum value [7]. 

• After the HO procedure is completed, the new link is 
established but TCP packet flow resumes with inefficient 
or un-initialized parameters set. 

Then, when moving from a segment to another, even 
assuming that negotiation procedures to access the new channel 
are efficient and transparent to upper layers, nevertheless a 
certain time t* is needed to physically switch the mobile device 
and notify the new channel resource manager. In this time 
period, no data are received (hypothesis of Hard HO [8]). 
Moreover when the HO is performed for necessity (i.e. WLAN 
link power decrease at the edge of the coverage area) BER 
increases as well as packet losses perceived by the unaware 
TCP. 

In this frame, TCP could benefit of explicit notifications of 
handovers in order to better cope with them. To predict a 
handover event and to allow TCP to perform a certain number 
optimization tasks, we propose a cross-layer mechanism 
between transport layer (adopting TCP) and network layer 
(adopting Mobile IP protocol).  

The paper is structured as follows: section II illustrates the 
reference scenario summarizing all the characteristics and 
assumptions adopted in our analysis; section III gives the 
details on the impact of the handover process on TCP 
dynamics; section IV shows a reference Cross Layer 
Architecture used in section V as basis for a novel TCP 
scheme; section VI describes the C++ simulator used to 
evaluate performance improvement coming from the adoption 
of the proposed cross-layer scheme and presents the most 
relevant results; section VII provides conclusions. 

II. REFERENCE SCENARIO 
The reference scenario is compliant with HMIPv6 

(Hierarchical Mobile IPv6) standard [4] with the key elements 
shown in the block diagram in fig. 1.  

The mobile node, which represents the user terminal, is 
moving across a hybrid network composed of one Access 
Router (i.e. AR1) that represents the satellite access and at least 
one AR (i.e. AR2…ARn) which uses WLAN technology. We 
suppose that the source of the data received by the Mobile 
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Node (MN) is a remote host connected via Internet to the 
mobile environment (“Sender”). 

All the downlink traffic coming from the Sender through 
different radio networks is routed via a single entity, the 
Mobile Anchor Point (MAP), which redirects traffic to the 
proper radio network (satellite or WiFi AR) and manages 
handover signaling. Then, it is logically connected to both 
satellite gateway and WiFi access points management, but also 
to other entities in charge to perform the mobility functions 
(Home Agent and Corresponding Node) that will not be 
addressed herein. 

 
Figure 1. Mobile environment 

The reference scenario used throughout this paper is 
composed of different overlapping segments of an access 
network. The technologies considered for the connections with 
the end user will be either: 

a) two way satellite standard (DVB-RCS) over a GEO link;  
b) WLAN access via WiFi "Hot Spots" (IEEE802.11b).  
In general, the moving user terminal is supposed to be able 

to perform transparently the hard HO operations between the 
access technologies a) and b) to obtain a seamless data channel 
during its movement.  

Only three different HO occurrences are identified:  
1) DVB-RCS → WiFi; 
2) WiFi → DVB-RCS; 
3) WiFi → WiFi. 

The case satellite-satellite is clearly of no practical interest, 
since the satellite coverage is assumed large enough with 
respect to user mobility needs. Case 3) is not addressed in 
details since it is out of the scope of this paper. 

Fig. 2 pictorially shows the reference scenario, with every 
possible handover occurrence between segment a) and segment 
b) highlighted by vertical lines, with the user terminal (MN) 
under satellite coverage and performing HO whenever a 
WLAN connection becomes available. The time spent into the 
WLAN coverage (TWLAN), not corresponding to the interval 
served by the WLAN, depends on the speed of the MN. 

In this paper we address the problems experienced by TCP 
during HO. We assume that the HO procedure is fully handled 
by HMIP up to the network layer and that during the HO 
procedure a certain number of IP packets are lost. Moreover, an 
additional no-connection time (out of service or HO time) 
occurs. This happens because of limited buffers in the 
terminals and for the transitory in the setup of the Intermediate 
Frequency electronics and Phase Locked Loop that produces 

corrupted packets [9]. The out of service time is mainly due to 
the limits of hardware dedicated to the hard HO switch and to 
the HO decision delay [8]. 

 
Figure 2. Reference scenario 

III. TCP BEHAVIOR DURING HANDOVERS 
TCP congestion control mechanism [6] interprets all the 

losses as implicit congestion. Then, when “holes” are detected 
in the sequence of the received packets/ acknowledgments, 
TCP generally retransmits the missing packets and decreases 
its transmission rate. Furthermore, TCP probes the available 
bandwidth and regulates its transmission rate by using the 
ACK reception rate as an internal clock. Unfortunately, during 
handover events, the corruption of packets (due to the power 
degradation) or quick round-trip delay (RTT) variation can 
cause harmful dynamics for TCP that perceives false 
congestion states and a not regular ACK flow. Main dynamics 
affecting TCP behavior in the considered scenario are briefly 
described.  

A. Transmission Errors 
Handover from WLAN Hot Spot to Satellite system is 

preceded by a gradual degradation of the WLAN link power 
that increases the Packet Error Rate (PER) perceived by TCP. 
TCP misinterprets such losses as a congestion notification, 
reduces its congestion window and triggers the congestion 
avoidance algorithm. Then, TCP flow will resume on the 
satellite link with very small congestion window and increases 
it slowly due to the long latency. As a consequence, satellite 
capacity will be wasted for long time. 

B. Handover time (t*) implications on RTO 
The handover time t* is the time needed to the mobile host to 

switch between different technologies. Therefore, when a 
handover is performed, an unexpected deep variation of the 
RTT could lead TCP to unnecessarily trigger its ACK-clocked 
recovery mechanisms [7]. In particular, Retransmission Time-
Out (RTO) is automatically updated over the time on the basis 
of the RTT measurements.  

A sudden increase of the RTT due to the handover time may 
lead to RTO expiration. In fact, when moving from WLAN to 
satellite system, the large delay difference 
(Delaysatellite>>DelayWLAN) increases the ACK-clock break and 
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then the probability of the RTO expiration. 
On the contrary, when the handover is exploited in the 

opposite direction, the RTO results to be largely overestimated 
causing too long wait time to restart transmission in case of 
network congestion.  

C. Generation of segment bursts 
If the new link delay is smaller than the old link delay (it is 

the case of handovers from satellite system to WLAN), the first 
ACK sent over the new link could overtake the last k ACKs 
sent over the old one. Then, due to TCP cumulative ACK 
scheme [7], a burst of k packets is sent at once. Intermediate 
buffers could not be dimensioned to support such a burst length 
causing multiple losses. 

D. Bandwidth-Delay product change 
TCP congestion window represents a sender’s estimate of 

the bandwidth-delay product (BDP) or pipe size. Different 
effects follow a BDP change depending on whether BDP 
increases or decrease after a handover: 

• moving from WLAN to the satellite system 
(BDPnew>BDPold), satellite link capacity will be 
underutilized; in fact, the initial congestion window is 
small and its increment is slow if congestion avoidance 
is performed (increase of 1 segment per RTT); 

• moving from satellite system to WLAN 
(BDPold>BDPnew), TCP will inject on the new link more 
packets than it would actually fit, causing congestion and 
dropping packets in the bottleneck router; if all the 
routers through the new path have enough room to 
accommodate all the packets the perceived RTT will 
drastically increase.  

IV. CROSS-LAYER SIGNALING ARCHITECTURE 
Among several Cross Layer (CL) signaling architectures 

referenced in literature, ECLAIR [10] has been considered as 
baseline for our work because it significantly suites the 
selected scenarios. In fact, it provides: 

• Bi-directional CL communication channel between each 
pair of layers in the stack; 

• Centralized control mechanism, called Optimizing 
Subsystem (OSS), to collect more CL adaptations, 
handle a multiple CL interaction, and to avoid conflicts 
between one or more CL interactions [11]; 

• Several Cross-layer enhancements via an open interface 
called Tuning Layer (TL) between each layer and the 
OSS. 

Fig. 3 shows the general architecture of ECLAIR adopted. 
Using this architecture TLs are a sort of middleware to mask to 
the Optimization Subsystem the platform dependent TCP/IP 
stack.  

The ECLAIR architecture has been already proposed in [10] 
to better handle HO addressing only theoretical analysis (no 
simulation results). Moreover, they used a different approach: 
for instance on HO recovery TCP window is restored and not 
set back to 1 segment as it is proposed in this paper. 

 
Figure 3. Cross-Layer Architecture Adopted (ECLAIR) 

V. CROSS-LAYER INTERACTIONS DESIGN 
This section describes how the ECLAIR architecture 

introduced in section IV has been adopted to avoid the harmful 
dynamics that arise during handovers (section III). We have 
introduced three CL adaptations to the standard TCP 
implementation:  

A. Freezing TCP flow 
To avoid the burst overflow (III.C) and an unnecessary 

overgrowth of the internal queues, it is useful to freeze TCP 
data flow, while MN is changing AR. Although this 
enhancement is the most intuitive, it implies a few problems, 
which are addressed and solved with the next two 
enhancements. 

B. Resetting of the sampled RTT  
TCP standard implementations attempt to predict future 

round-trip times by sampling and averaging the RTT of each 
packet according to the Karn and Partridge relation (1) [12]: 

sRTTi+1 = α * sRTTi + (1-α) * Si, (1) 
where sRTT is the smoothed RTT, α is a constant between 0 
and 1, and Si is the sampled RTT of the Packet ith. The goal is 
to compute the RTO, usually equal to 2*sRTT. To avoid the 
harmful behavior described in section III.B, it is useful to reset 
the sRTT after each change of interface, avoiding a misleading 
estimation of sRTT with the above mentioned consequences. 

C. Optimized handling of cwnd and sstresh 
TCP standard implementations handle the congestion control 

through a combined use of cwnd and ssthresh [5]. After MN 
has switched to a different AR, as explained in section III.A, 
the increase of Packet Error Rate may lead to packet losses, 
with the side effect that TCP reduces cwnd, and sstresh. To 
avoid this behavior, it is useful to handle these parameters in a 
smarter way. Thus, since ssthresh represents the threshold 
above which TCP performs a linear increase of the cwnd 
instead of exponential, it should be useful to set ssthresh close 
to the real capacity of the new channel that is related to the 
BDP (section III.D).  

Moreover, after a handover from satellite to WLAN, cwnd 
may be greater than BDP. This causes harmful dynamics of 
TCP with possibility of channel congestion. However, it is 
possible that, due to some external circumstances (e.g. high 
traffic rate), leaving the cwnd unchanged might lead to a 
further congestion. A safe way to prevent this is to set, after a 
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handover, the cwnd value to the Maximum Segment Size 
(MSS). 

VI. SIMULATIONS 

A. Description 
In order to evaluate performance of the proposed 

enhancements in comparison with the standard protocol stack, 
a custom simulator in C++ has been developed. It re-
implements the communication stack keeping the data flow in 
a stand-alone context. The major reason to use a custom 
simulator is that any other existing simulator does not provide 
explicit methods to enable CL communication channels.  

Through the Object Oriented modeling (OOD) [12] shown in 
fig. 4 and adopted for this simulator, it is possible to map 
classes to elements of ECLAIR, so that the stack layering 
concept can be deployed in OOD using classes hierarchy. This 
will help in the future to apply the proposed changes to a real 
implementation of the stack. 

 
Figure 4. Simulator Object Oriented Simplified Model 

The CL simulator core has been setup to simulate a data 
transfer according to the scenario described in section II, 
assuming a SAT channel of 1 Mbit/s with RTT fixed to 550 ms 
and a “Hot Spot” area as a WLAN with a bandwidth of 11 
Mbit/s and a RTT of 25 ms. A PER of 10-4 is assumed in both 
SAT and WLAN channel. Data packet dimension is fixed to 
1024 bytes. We measured the Data Transfer Time (DTT) and 
the instantaneous throughput of a heavy data transfer 
application, such as a FTP, with data file of 10 MBytes. During 
the transfer, at T0 it is assumed that the MN, currently served 
by a satellite system, enters in a Hot Spot area, and thus a 
handover to the WLAN network occurs. After that, it leaves the 
Hot Spot and comes back to the SAT network. This simulation 
has been repeated varying two parameters: TWLAN, that is the 
overall time during which the MN is inside the WLAN 
coverage, and t*, that is the handover execution time, assumed 
constant independently on the start and the target network to 
simplify the model. 

B. Performance evaluation 
Fig. 5 shows instantaneous throughput variation as a 

function of time when a handover occurs during a data transfer 
with t*=2.5 s, T0= 5.5 s and TWLAN,= 5 s.  

When at T0 the MN performs the HO to the “Hot Spot” 

using the modified stack, the throughput increases thanks to the 
effect of the proposed technique, which in particular avoids an 
overflow of the internal queues. A reset of the sRTT is also 
forced, causing a faster adaptation of TCP at T0+t* to new 
channel conditions. 
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Figure 5. Throughput with t*=2.5 s and TWLAN= 5 s 

At T0+TWLAN, when the MN moves back to the SAT 
channel, the standard stack shows a worse response due to the 
high RTT that causes a slower growth of cwnd. With the 
proposed cross-layer handling of cwnd and ssthresh values it is 
possible to force TCP to re-apply the Slow Start algorithm and 
obtain a faster growth of data rate up to the BDP of the new 
link. This, combined with a reset of sRTT, prevents 
unnecessary timeouts and unwanted ssthresh decreases. 
Finally, by freezing TCP data flow, it is also possible to avoid 
the initial delay caused by the data stored in the internal queues 
during the handover that must be sent when the new channel 
becomes available. 

Fig. 6 shows the variation of the DTT by varying t* in the 
interval [0.5 s, 6.5 s] with TWLAN fixed to 7 s, using the 
standard and the modified stack. The horizontal line represents 
the transfer time if the MN keeps staying connected through 
the SAT channel without performing HO. 

The value of t*, defined as t*MAX, at the intersection between 
the DTT curves and the SAT constant transfer line represents 
the trade-off HO execution time. If the HO procedure takes less 
than t*MAX, in case a WLAN is available, it is advisable to 
perform a HO to reduce DTT. If the HO procedure takes more 
than t*MAX there are no advantages in terms of DTT with 
respect to the SAT constant transfer rate and thus it is better 
that the MN does not perform the HO, unless it is strictly 
necessary. 

In fig. 6, it is also evident a meaningful improvement in 
terms of DTT implementing the modified stack with respect to 
the standard (about 30s). Also t*MAX value results improved: 
while t*MAX is about 2.5 s for the standard stack, it is 5.5 s for 
the modified stack. As a consequence, less severe requirements 
in terms of HO execution time are allowed. 

Fig. 7 shows how DTT varies as a function of TWLAN, 
considering a t* of 2.5 s. Values for TWLAN ranges between 2 s 
and 15 s.  

In the whole range of TWLAN, fig. 7 shows that the proposed 
mechanisms always help to greatly alleviate the TCP problems 
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which increase the DTT when HO is performed. 
When TWLAN is small (less than 3 s), the improvement 

introduced by the modified stack is relatively small because 
TWLAN ≈ t* and there is no effective usage of the Hot Spot 
coverage. Increasing the TWLAN beyond 3 s, the DTT of the 
modified stack rapidly decreases, while DTT of standard stack 
keeps constant, due to the slow growth of throughput when the 
session switches back to the SAT channel at (T0+TWLAN). Then, 
the gap between the curves remains almost the same (about 30 
s) until TWLAN is big enough to complete the 10 Mbytes file 
transfer before the communication comes back to the SAT 
channel. In these circumstances, the gain is limited since there 
is no transfer when the MN switches back to the SAT channel. 
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TWLAN_MIN is the minimum TWLAN value that leads to a 
benefit, in terms of DTT decrease, while performing a HO: it 
can be identified as the value of TWLAN at the intersection of 
DTT curves with the SAT constant transfer rate in Figure 7. In 
practice this means that if the MN is under the Hot Spot 
coverage less than TWLAN_MIN there is no improvement in terms 
of DTT and then it is better not performing the HO, unless it is 
strictly necessary. It is possible to note that TWLAN_MIN is lower 
for the modified stack implying that we can accept shorter 
permanence time in Hot Spot coverage areas. 

VII. CONCLUSION 
In a scenario characterized by heterogeneous networks 

composed of a satellite segment and a terrestrial wireless 
segment (WLAN) the behavior of TCP during handovers 
between links with different Bandwidth Delay Product has 
been addressed, taking into account the real hardware 
implementation that can lead to packet loss and delays during 

the HO procedure itself. We proposed some cross-layer 
enhancements targeted to the mitigation of such problems, 
introducing some adaptations in parameters and algorithms of 
TCP during the HO phase. 

This preliminary work has been the starting point for 
defining a complete cross-layer model, implemented into a 
TCP/IP emulated stack written from scratch in C++. 

We proved the feasibility of a cross-layer approach which 
truly offers better performances compared to a standard stack. 
In particular, outcomes regard both the handover parameters 
(TWLAN_MIN, t*MAX) and the Data Transfer Time, which result 
improved when adopting the proposed modified stack. 
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