

Abstract — In a mobile communication scenario handover
functions must be supported in order to keep connection alive
switching between different points of access. Moreover, if the
infrastructure is composed of different networks or technologies,
intersegment handover is necessary to roam from a component to
another. The handover function is implemented either for
necessity or to improve performance. Necessity means that the
terminal must perform a handover because its current network
connection is worsening; in the other case switching to another
network can help to achieve better performance even if the
current network connection is fine. Furthermore, the handover
can be soft or hard, according to the possible overlap in the
connection of the two segments involved. This paper illustrates the
behavior of TCP during intersegment handovers in an
architecture including two segments: satellite and WLAN. In
particular, the goal is to carry out a thorough analysis of a cross-
layer based mechanism applicable during handovers to optimize
the TCP performance. Such a mechanism is validated with an ad-
hoc software simulator written in C++ and the most meaningful
results are shown.

Index Terms — cross-layer, TCP, handover, multi-segment
networks.

I. INTRODUCTION
owadays fast access to telecommunication networks is
often required in mobility and along wide and

heterogeneous geographical areas. To meet these requirements,
broadband satellite networks, which allow a potentially global
coverage and then an ubiquitous access to the communication
services, and WLAN systems, which offer a much higher
capacity and less latency but in a limited coverage area, if
jointly used, can represent an optimal solution for mobile and
nomadic users to uninterruptedly access the Internet. In fact,
low delay and wide band can be provided under the WLAN
"Hot Spot" coverage, while continuity of service can be
guaranteed thanks to satellite links which can either provide
capacity directly to users or to WLANs as backbone. Of
course, efficient inter-segment handovers (HO) procedures are
needed to switch between such different technologies [1].

Mobile Internet Protocol and its newer realization
Hierarchical Mobile IPv6 [2][3][4] has been identified as a
valid approach to provide a mobility support at the IP layer,
allowing mobile nodes to change network without changing
their IP address to keep communication consistency.

Unfortunately, TCP/IP protocols were not designed to
optimally handle mobility. HO between links with different
delay and bandwidth-delay product causes a number of
problems such as the generation of segment bursts and delivery
of out-of-order packets [5]. Even a good management of the
HO at IP level does not prevent completely TCP from
experiencing unwanted effects. In fact, both transmission errors

and the sudden delay change cause harmful consequences to
TCP performance:

• Losses are misinterpreted as a congestion and thus TCP
congestion window is dropped to a lower value [6];

• TCP computes the retransmission timeout (RTO) on the
basis of measured RTT values. Then, an unexpected
increase of the RTT could lead to an undesired RTO
expiration with a consequent reduction of the congestion
window to a minimum value [7].

• After the HO procedure is completed, the new link is
established but TCP packet flow resumes with inefficient
or un-initialized parameters set.

Then, when moving from a segment to another, even
assuming that negotiation procedures to access the new channel
are efficient and transparent to upper layers, nevertheless a
certain time t* is needed to physically switch the mobile device
and notify the new channel resource manager. In this time
period, no data are received (hypothesis of Hard HO [8]).
Moreover when the HO is performed for necessity (i.e. WLAN
link power decrease at the edge of the coverage area) BER
increases as well as packet losses perceived by the unaware
TCP.

In this frame, TCP could benefit of explicit notifications of
handovers in order to better cope with them. To predict a
handover event and to allow TCP to perform a certain number
optimization tasks, we propose a cross-layer mechanism
between transport layer (adopting TCP) and network layer
(adopting Mobile IP protocol).

The paper is structured as follows: section II illustrates the
reference scenario summarizing all the characteristics and
assumptions adopted in our analysis; section III gives the
details on the impact of the handover process on TCP
dynamics; section IV shows a reference Cross Layer
Architecture used in section V as basis for a novel TCP
scheme; section VI describes the C++ simulator used to
evaluate performance improvement coming from the adoption
of the proposed cross-layer scheme and presents the most
relevant results; section VII provides conclusions.

II. REFERENCE SCENARIO
The reference scenario is compliant with HMIPv6

(Hierarchical Mobile IPv6) standard [4] with the key elements
shown in the block diagram in fig. 1.

The mobile node, which represents the user terminal, is
moving across a hybrid network composed of one Access
Router (i.e. AR1) that represents the satellite access and at least
one AR (i.e. AR2…ARn) which uses WLAN technology. We
suppose that the source of the data received by the Mobile

D. Fanni, M. Luglio, C. Roseti, and F. Zampognaro
University of Rome “Tor Vergata”

Via del Politecnico, 1
00133 Roma – Italy

A Cross-Layer based handover for TCP applications

N

1550-2252/$25.00 ©2007 IEEE 1415

Node (MN) is a remote host connected via Internet to the
mobile environment (“Sender”).

All the downlink traffic coming from the Sender through
different radio networks is routed via a single entity, the
Mobile Anchor Point (MAP), which redirects traffic to the
proper radio network (satellite or WiFi AR) and manages
handover signaling. Then, it is logically connected to both
satellite gateway and WiFi access points management, but also
to other entities in charge to perform the mobility functions
(Home Agent and Corresponding Node) that will not be
addressed herein.

Figure 1. Mobile environment

The reference scenario used throughout this paper is
composed of different overlapping segments of an access
network. The technologies considered for the connections with
the end user will be either:

a) two way satellite standard (DVB-RCS) over a GEO link;
b) WLAN access via WiFi "Hot Spots" (IEEE802.11b).
In general, the moving user terminal is supposed to be able

to perform transparently the hard HO operations between the
access technologies a) and b) to obtain a seamless data channel
during its movement.

Only three different HO occurrences are identified:
1) DVB-RCS → WiFi;
2) WiFi → DVB-RCS;
3) WiFi → WiFi.

The case satellite-satellite is clearly of no practical interest,
since the satellite coverage is assumed large enough with
respect to user mobility needs. Case 3) is not addressed in
details since it is out of the scope of this paper.

Fig. 2 pictorially shows the reference scenario, with every
possible handover occurrence between segment a) and segment
b) highlighted by vertical lines, with the user terminal (MN)
under satellite coverage and performing HO whenever a
WLAN connection becomes available. The time spent into the
WLAN coverage (TWLAN), not corresponding to the interval
served by the WLAN, depends on the speed of the MN.

In this paper we address the problems experienced by TCP
during HO. We assume that the HO procedure is fully handled
by HMIP up to the network layer and that during the HO
procedure a certain number of IP packets are lost. Moreover, an
additional no-connection time (out of service or HO time)
occurs. This happens because of limited buffers in the
terminals and for the transitory in the setup of the Intermediate
Frequency electronics and Phase Locked Loop that produces

corrupted packets [9]. The out of service time is mainly due to
the limits of hardware dedicated to the hard HO switch and to
the HO decision delay [8].

Figure 2. Reference scenario

III. TCP BEHAVIOR DURING HANDOVERS
TCP congestion control mechanism [6] interprets all the

losses as implicit congestion. Then, when “holes” are detected
in the sequence of the received packets/ acknowledgments,
TCP generally retransmits the missing packets and decreases
its transmission rate. Furthermore, TCP probes the available
bandwidth and regulates its transmission rate by using the
ACK reception rate as an internal clock. Unfortunately, during
handover events, the corruption of packets (due to the power
degradation) or quick round-trip delay (RTT) variation can
cause harmful dynamics for TCP that perceives false
congestion states and a not regular ACK flow. Main dynamics
affecting TCP behavior in the considered scenario are briefly
described.

A. Transmission Errors
Handover from WLAN Hot Spot to Satellite system is

preceded by a gradual degradation of the WLAN link power
that increases the Packet Error Rate (PER) perceived by TCP.
TCP misinterprets such losses as a congestion notification,
reduces its congestion window and triggers the congestion
avoidance algorithm. Then, TCP flow will resume on the
satellite link with very small congestion window and increases
it slowly due to the long latency. As a consequence, satellite
capacity will be wasted for long time.

B. Handover time (t*) implications on RTO
The handover time t* is the time needed to the mobile host to

switch between different technologies. Therefore, when a
handover is performed, an unexpected deep variation of the
RTT could lead TCP to unnecessarily trigger its ACK-clocked
recovery mechanisms [7]. In particular, Retransmission Time-
Out (RTO) is automatically updated over the time on the basis
of the RTT measurements.

A sudden increase of the RTT due to the handover time may
lead to RTO expiration. In fact, when moving from WLAN to
satellite system, the large delay difference
(Delaysatellite>>DelayWLAN) increases the ACK-clock break and

 1416

then the probability of the RTO expiration.
On the contrary, when the handover is exploited in the

opposite direction, the RTO results to be largely overestimated
causing too long wait time to restart transmission in case of
network congestion.

C. Generation of segment bursts
If the new link delay is smaller than the old link delay (it is

the case of handovers from satellite system to WLAN), the first
ACK sent over the new link could overtake the last k ACKs
sent over the old one. Then, due to TCP cumulative ACK
scheme [7], a burst of k packets is sent at once. Intermediate
buffers could not be dimensioned to support such a burst length
causing multiple losses.

D. Bandwidth-Delay product change
TCP congestion window represents a sender’s estimate of

the bandwidth-delay product (BDP) or pipe size. Different
effects follow a BDP change depending on whether BDP
increases or decrease after a handover:

• moving from WLAN to the satellite system
(BDPnew>BDPold), satellite link capacity will be
underutilized; in fact, the initial congestion window is
small and its increment is slow if congestion avoidance
is performed (increase of 1 segment per RTT);

• moving from satellite system to WLAN
(BDPold>BDPnew), TCP will inject on the new link more
packets than it would actually fit, causing congestion and
dropping packets in the bottleneck router; if all the
routers through the new path have enough room to
accommodate all the packets the perceived RTT will
drastically increase.

IV. CROSS-LAYER SIGNALING ARCHITECTURE
Among several Cross Layer (CL) signaling architectures

referenced in literature, ECLAIR [10] has been considered as
baseline for our work because it significantly suites the
selected scenarios. In fact, it provides:

• Bi-directional CL communication channel between each
pair of layers in the stack;

• Centralized control mechanism, called Optimizing
Subsystem (OSS), to collect more CL adaptations,
handle a multiple CL interaction, and to avoid conflicts
between one or more CL interactions [11];

• Several Cross-layer enhancements via an open interface
called Tuning Layer (TL) between each layer and the
OSS.

Fig. 3 shows the general architecture of ECLAIR adopted.
Using this architecture TLs are a sort of middleware to mask to
the Optimization Subsystem the platform dependent TCP/IP
stack.

The ECLAIR architecture has been already proposed in [10]
to better handle HO addressing only theoretical analysis (no
simulation results). Moreover, they used a different approach:
for instance on HO recovery TCP window is restored and not
set back to 1 segment as it is proposed in this paper.

Figure 3. Cross-Layer Architecture Adopted (ECLAIR)

V. CROSS-LAYER INTERACTIONS DESIGN
This section describes how the ECLAIR architecture

introduced in section IV has been adopted to avoid the harmful
dynamics that arise during handovers (section III). We have
introduced three CL adaptations to the standard TCP
implementation:

A. Freezing TCP flow
To avoid the burst overflow (III.C) and an unnecessary

overgrowth of the internal queues, it is useful to freeze TCP
data flow, while MN is changing AR. Although this
enhancement is the most intuitive, it implies a few problems,
which are addressed and solved with the next two
enhancements.

B. Resetting of the sampled RTT
TCP standard implementations attempt to predict future

round-trip times by sampling and averaging the RTT of each
packet according to the Karn and Partridge relation (1) [12]:

sRTTi+1 = α * sRTTi + (1-α) * Si, (1)
where sRTT is the smoothed RTT, α is a constant between 0
and 1, and Si is the sampled RTT of the Packet ith. The goal is
to compute the RTO, usually equal to 2*sRTT. To avoid the
harmful behavior described in section III.B, it is useful to reset
the sRTT after each change of interface, avoiding a misleading
estimation of sRTT with the above mentioned consequences.

C. Optimized handling of cwnd and sstresh
TCP standard implementations handle the congestion control

through a combined use of cwnd and ssthresh [5]. After MN
has switched to a different AR, as explained in section III.A,
the increase of Packet Error Rate may lead to packet losses,
with the side effect that TCP reduces cwnd, and sstresh. To
avoid this behavior, it is useful to handle these parameters in a
smarter way. Thus, since ssthresh represents the threshold
above which TCP performs a linear increase of the cwnd
instead of exponential, it should be useful to set ssthresh close
to the real capacity of the new channel that is related to the
BDP (section III.D).

Moreover, after a handover from satellite to WLAN, cwnd
may be greater than BDP. This causes harmful dynamics of
TCP with possibility of channel congestion. However, it is
possible that, due to some external circumstances (e.g. high
traffic rate), leaving the cwnd unchanged might lead to a
further congestion. A safe way to prevent this is to set, after a

 1417

handover, the cwnd value to the Maximum Segment Size
(MSS).

VI. SIMULATIONS

A. Description
In order to evaluate performance of the proposed

enhancements in comparison with the standard protocol stack,
a custom simulator in C++ has been developed. It re-
implements the communication stack keeping the data flow in
a stand-alone context. The major reason to use a custom
simulator is that any other existing simulator does not provide
explicit methods to enable CL communication channels.

Through the Object Oriented modeling (OOD) [12] shown in
fig. 4 and adopted for this simulator, it is possible to map
classes to elements of ECLAIR, so that the stack layering
concept can be deployed in OOD using classes hierarchy. This
will help in the future to apply the proposed changes to a real
implementation of the stack.

Figure 4. Simulator Object Oriented Simplified Model

The CL simulator core has been setup to simulate a data
transfer according to the scenario described in section II,
assuming a SAT channel of 1 Mbit/s with RTT fixed to 550 ms
and a “Hot Spot” area as a WLAN with a bandwidth of 11
Mbit/s and a RTT of 25 ms. A PER of 10-4 is assumed in both
SAT and WLAN channel. Data packet dimension is fixed to
1024 bytes. We measured the Data Transfer Time (DTT) and
the instantaneous throughput of a heavy data transfer
application, such as a FTP, with data file of 10 MBytes. During
the transfer, at T0 it is assumed that the MN, currently served
by a satellite system, enters in a Hot Spot area, and thus a
handover to the WLAN network occurs. After that, it leaves the
Hot Spot and comes back to the SAT network. This simulation
has been repeated varying two parameters: TWLAN, that is the
overall time during which the MN is inside the WLAN
coverage, and t*, that is the handover execution time, assumed
constant independently on the start and the target network to
simplify the model.

B. Performance evaluation
Fig. 5 shows instantaneous throughput variation as a

function of time when a handover occurs during a data transfer
with t*=2.5 s, T0= 5.5 s and TWLAN,= 5 s.

When at T0 the MN performs the HO to the “Hot Spot”

using the modified stack, the throughput increases thanks to the
effect of the proposed technique, which in particular avoids an
overflow of the internal queues. A reset of the sRTT is also
forced, causing a faster adaptation of TCP at T0+t* to new
channel conditions.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
0

250

500

750

1000

1250

T
H

R
O

U
G

H
PU

T
 (k

by
te

s/
s)

TIME (s)

STANDARD CROSS-LAYERING

t*
t*

TWLAN

Figure 5. Throughput with t*=2.5 s and TWLAN= 5 s

At T0+TWLAN, when the MN moves back to the SAT
channel, the standard stack shows a worse response due to the
high RTT that causes a slower growth of cwnd. With the
proposed cross-layer handling of cwnd and ssthresh values it is
possible to force TCP to re-apply the Slow Start algorithm and
obtain a faster growth of data rate up to the BDP of the new
link. This, combined with a reset of sRTT, prevents
unnecessary timeouts and unwanted ssthresh decreases.
Finally, by freezing TCP data flow, it is also possible to avoid
the initial delay caused by the data stored in the internal queues
during the handover that must be sent when the new channel
becomes available.

Fig. 6 shows the variation of the DTT by varying t* in the
interval [0.5 s, 6.5 s] with TWLAN fixed to 7 s, using the
standard and the modified stack. The horizontal line represents
the transfer time if the MN keeps staying connected through
the SAT channel without performing HO.

The value of t*, defined as t*MAX, at the intersection between
the DTT curves and the SAT constant transfer line represents
the trade-off HO execution time. If the HO procedure takes less
than t*MAX, in case a WLAN is available, it is advisable to
perform a HO to reduce DTT. If the HO procedure takes more
than t*MAX there are no advantages in terms of DTT with
respect to the SAT constant transfer rate and thus it is better
that the MN does not perform the HO, unless it is strictly
necessary.

In fig. 6, it is also evident a meaningful improvement in
terms of DTT implementing the modified stack with respect to
the standard (about 30s). Also t*MAX value results improved:
while t*MAX is about 2.5 s for the standard stack, it is 5.5 s for
the modified stack. As a consequence, less severe requirements
in terms of HO execution time are allowed.

Fig. 7 shows how DTT varies as a function of TWLAN,
considering a t* of 2.5 s. Values for TWLAN ranges between 2 s
and 15 s.

In the whole range of TWLAN, fig. 7 shows that the proposed
mechanisms always help to greatly alleviate the TCP problems

 1418

which increase the DTT when HO is performed.
When TWLAN is small (less than 3 s), the improvement

introduced by the modified stack is relatively small because
TWLAN ≈ t* and there is no effective usage of the Hot Spot
coverage. Increasing the TWLAN beyond 3 s, the DTT of the
modified stack rapidly decreases, while DTT of standard stack
keeps constant, due to the slow growth of throughput when the
session switches back to the SAT channel at (T0+TWLAN). Then,
the gap between the curves remains almost the same (about 30
s) until TWLAN is big enough to complete the 10 Mbytes file
transfer before the communication comes back to the SAT
channel. In these circumstances, the gain is limited since there
is no transfer when the MN switches back to the SAT channel.

30

40

50

60

70

80

90

100

110

120

1500 2500 3500 4500 5500 6500
Handover time (ms)

Standard Crosslayering No Handover
Figure 6. DTT @ TWLAN constant (7 s)

0

20

40

60

80

100

120

1500 3000 4500 6000 7500 9000 10500 12000 13500 15000
WLAN Time (ms)

Standard Crosslayering No Handover
Figure 7. DTT @ t* constant (2.5 s)

TWLAN_MIN is the minimum TWLAN value that leads to a
benefit, in terms of DTT decrease, while performing a HO: it
can be identified as the value of TWLAN at the intersection of
DTT curves with the SAT constant transfer rate in Figure 7. In
practice this means that if the MN is under the Hot Spot
coverage less than TWLAN_MIN there is no improvement in terms
of DTT and then it is better not performing the HO, unless it is
strictly necessary. It is possible to note that TWLAN_MIN is lower
for the modified stack implying that we can accept shorter
permanence time in Hot Spot coverage areas.

VII. CONCLUSION
In a scenario characterized by heterogeneous networks

composed of a satellite segment and a terrestrial wireless
segment (WLAN) the behavior of TCP during handovers
between links with different Bandwidth Delay Product has
been addressed, taking into account the real hardware
implementation that can lead to packet loss and delays during

the HO procedure itself. We proposed some cross-layer
enhancements targeted to the mitigation of such problems,
introducing some adaptations in parameters and algorithms of
TCP during the HO phase.

This preliminary work has been the starting point for
defining a complete cross-layer model, implemented into a
TCP/IP emulated stack written from scratch in C++.

We proved the feasibility of a cross-layer approach which
truly offers better performances compared to a standard stack.
In particular, outcomes regard both the handover parameters
(TWLAN_MIN, t*MAX) and the Data Transfer Time, which result
improved when adopting the proposed modified stack.

REFERENCES
[1] M. Leo, M. Luglio, “Intersegment Handover between Terrestrial and

Satellite segments: Analysis and Performance Evaluations through
simulation”, IEEE Transactions on Vehicular Technology, vol. 50, n. 3,
May 2001, pp. 750-766.

[2] C. Perkins, “IP Mobility Support”, RFC 2002 , Oct. 1996.
[3] C. Perkins, “IP Mobility Support for IPv4”, RFC 3344, Aug. 2002.
[4] H. Soliman et al., “Hierarchical Mobile IPv6 Mobility Management

(HMIPv6)”, RFC 4140, Nov. 2005.
[5] W. Hansmann, M. Frank, "On Things to Happen During a TCP

Handover," 28th Annual IEEE International Conference on Local
Computer Networks (LCN'03), Oct. 2003, Bonn/Königswinter, Germany,
pp. 109-118.

[6] W. Stevens, “TCP Congestion Control”, IETF RFC 2581, Apr. 1999.
[7] W. Stevens. “TCP/IP Illustrated. Vol. 1”, Ed. Addison Wesley, Reading,

UK, 1994.
[8] M. Zonoozi, P. Dassanayake, M. Faulkner, "Optimum Hysteresis, Signal

Averaging Time and Handover Delay", IEEE Vehicular Technology
Conference, Mar. 1997, Phoenix, AZ, USA , vol. 1 pp 310-313.

[9] J-O. Vatn “An experimental study of IEEE 802.11b handover
performance and its effect on voice traffic”, technical paper, July 2003
citeseer.ist.psu.edu/vatn03experimental.html

[10] V. T. Raisinghani and S. Iyer, “ECLAIR: An Efficient Cross Layer
Architecture for wireless protocol stacks”, in Proc. of World Wireless
Congress (WWC04) , May 2004, San Francisco, USA.

[11] V. Kawadia, P. R. Kumar, “A cautionary perspective on cross layer
design”, IEEE Wireless Communications, Feb. 2005, Vol. 12, Issue 1, pp.
3-11.

[12] P. Karn and C. Partridge, "Improving Round-Trip Time Estimates in
Reliable Transport Protocols", ACM Transactions on Computer Systems,
Vol. 9, N. 4, Nov. 1991, pp. 364-373.

[13] I. Sommerville, “Software Engineering”, Addison-Wesley, 5th ed.,
Harlow, England, 1996.

 1419

	Select a link below
	Return to Proceedings

