

Network Layer Security: Design for A Cross Layer
Architecture

S. Ramachandran±, G. Fairhurst±, M. Luglio*, C. Roseti*, S. Provenzano*

±Electronic Research Group, University of Aberdeen, Scotland, AB24 3UE
* Electronics Engineering Department, University of Rome “Tor Vergata”, Italy

{raj, gorry}@erg.abdn.ac.uk, luglio@uniroma2.it, roseti@ing.uniroma2.it

Abstract- Traditional modular layering schemes have served a
major part in the development of a variety of protocols. However,
as the physical layer impairments become more unpredictable, a
cross layer design (CLD) which is dynamic in nature provides
better performance. CLD introduces new challenges in protocol
design as well as in the area of security.

Using numerical analysis, we show that a link layer design
employing header compression and cross layer signalling to
protect protocol headers can limit packet discarding. This paper
also reviews the IPsec protocol and describes how IPsec can be
modified for cross layer architecture.

Key words: Cross layer, UDP-Lite, IPsec, CL-IPsec, Header
protection

I. INTRODUCTION

Traditionally network systems design has followed the
Open Systems Interface (OSI) model. In this model the
complex task of host-to-host networking is divided into
different logical layers, and information is passed between
adjacent logical layers through a specific interface (service
access point). Today a variety of communication mediums
(wired and/or wireless) are used to relay information. This
heterogeneity in the network infrastructure may cause
information to be lost due to either erratic channel behaviour
(e.g. scintillation errors, signal fade etc.) or a processing glitch
in the intermediate systems. To cope with such dynamic
behaviours, next generation network systems design needs a
reference model that is more flexible. One such model is the
Cross Layer Architecture (CLA).

CLA in a “nut-shell” can be defined as a design approach

where, non-adjacent layers of an OSI reference model co-
ordinate in order to optimize system performance. This design
approach contradicts the OSI reference model, where the
protocols in different layers function independent to each
other and only adjacent layers can communicate with one
another through well known interfaces. In a CLA, it is
assumed that the layer(s) can tolerate errors to a certain
magnitude in parts of its payload. Modern multimedia codecs
(e.g. AMR [1], H.264 [2]) are designed to be error resilient.
Other applications such as reliable multicast transport can use
various error/erasure correction codes to protect against
channel impairments.

Today UDP is the preferred transport protocol to deliver

multimedia as well as multicast packets over the Internet.

However, due to its stringent error check, even single bit error
may lead to packet loss. A transport protocol called UDP-
Lite, that uses partial checksum, was therefore designed to
alleviate this inherent problem of UDP. UDP-Lite inspects
error on only part of the packet identified as sensitive to errors
by the checksum coverage field, and ignores errors in the
remaining parts of the packet. However to take advantage of
UDP-Lite, modifications are required at the lower layers to
allow corrupted packets to be delivered to the higher layers.
Security is paramount in today’s Internet. A security
architecture that is compliant with UDP-Lite needs to be
considered.

The structure of this paper is as follows: the next section

introduces the difference between UDP and UDP-Lite. This
section also explains the various link layer modifications that
are required when using UDP-Lite. Section 3 describes a
security architecture using IPsec that is compliant with a CLA
approach using UDP-Lite. This section also addresses the use
of header compression with IPsec. Conclusion and future work
is explained in Section 4.

II. UDP Vs. UDP-Lite

Due to its low protocol overhead (8 bytes) and processing
overhead User Datagram Protocol [3] has found its usage in
various delay sensitive as well as streaming application. Many
of these applications can tolerate bit errors in the data payload
better than the loss of a full packet. For instance modern
audio/video codec such as Reversible Variable Length Codes
(RVLC) [4] can extract useful information from blocks of
corrupt data to conceal the effect of error. This can yield a
better degree of visual or audio experience. Other examples
are reliable multicast protocols which can employ packet-level
forward error correction (FEC) codes to reliably recover from
errors and/or erasures. However due to the strict error check
provided by UDP the entire packet will be dropped in case of
bit errors. To solve this problem the IETF standardized a
protocol called UDP-Lite [5]. As shown in Figure. 1 the
difference between UDP and UDP-Lite is that the 16-bit
Length field in the UDP is replaced by a 16-bit Checksum
Coverage field.

1-4244-0939-X/07/$25.00 © 2007 IEEE 271

Figure. 1. UDP-Lite header

When using UDP-Lite, a packet is divided into sensitive

and insensitive parts. An application uses the Checksum
Coverage field, to indicate the number of bytes from the start
of the UDP-Lite header that are to be considered sensitive to
bit errors. Since the receiver only calculates checksum over
the sensitive part any bit errors in the insensitive portion of the
packet is ignored. The minimum coverage length is 8 bytes,
which only includes the UDP-Lite header whereas a coverage
equal to zero indicates that the checksum covers the entire
packet [5].

A. Limit packet discarding using UDP-Lite

Work described in [6] has shown the advantage of using
UDP-Lite. However to achieve this it is important that the
sensitive bytes are delivered error-free. [7] has shown that, it
is common for a packet header to be corrupt. For reliable
delivery of sensitive bytes, following techniques can be used:

Header compression and Partial checksum:- When using

UDP-Lite it is essential that the lower layers do not drop the
packet due to errors in the insensitive part. A partial error
detection scheme, as shown in Figure. 2, is therefore required
at the lower layers (e.g. link layer). Implicit cross layer
signalling techniques can be used to modify link layer to
provide partial error check.

Figure. 2. Partial checksum by link layer

Works described in [8-10]have shown that using a partial

checksum scheme, which detects error in the link layer header
and the sensitive part of the frame improves the probability of
packet delivery to the higher layers.

In some applications the overhead due to protocol headers

can be larger than the application data itself (e.g. VoIP). Such
an over head can be reduced by use of compression algorithms
such as RoHC, IPHC, etc. Performing HC over sensitive bytes
not only reduces the channel utilization, but it also reduces the
probability of errors in sensitive bytes.

Header compression with partial checksum and Header

Protection: - In case of networks where error patterns vary
rapidly with time (e.g. mobile satellite nodes), the sensitive
bytes can still be in error [7]. One way of protecting the
sensitive bytes is by using a strong forward error correction

(FEC) code. The work described in [11] has shown in detail
how such a scheme can be useful for both error-tolerant
applications as well as for bulk data transfer. The model
described here uses a combination of header compression,
partial checksum and header protection as illustrated in Figure
3.

 A sample architecture that uses this technique is given in

[12], where Robust Header Compression (RoHC) [13] was
used to compress the protocol headers (RTP/UDP/IPv6) and
Joint Source Channel coding and decoding (JSCC/D)[14] was
used to provide the necessary error protection of the sensitive
bytes at the physical layer.

Figure 3. MPHP with HC

Other mechanisms, as described in [15] have been

proposed, where the a packet is divided into different frames,
based on the sensitivity information from the link layer, and a
higher coding and modulation is used for the sensitive parts
w.r.t. insensitive parts. A process to de-multiplex these frames
needs to be designed.

B. Packet loss analysis for various schemes

To evaluate the performance of the above schemes, we
compute the packet loss ratio at the transport layer as a result
of the varying link layer bit error rates (BER). For the purpose
of analysis, we have considered the use of a reliable multicast
protocol called FLUTE [16] over UDP-Lite and the link layer
protocol considered is the Unidirectional Lightweight
Encapsulation (ULE)[17].

The coverage length at the link layer include the ULE

header (4 bytes), IP header (20 bytes), UDP-Lite header (8
bytes), FLUTE header (including extension headers, 44 bytes)
and the link checksum (4 bytes), which is a total of 80 bytes.
In the schemes using header compression the coverage length
can be reduced to 40 bytes, i.e. compressing the IP/UDP-Lite
header to 4 bytes [6], the FLUTE general header and the
extension headers can be compressed to 28 bytes based on the
methods described in [18]. The remaining 8 bytes corresponds
to the uncompressed link header and CRC-32.

The link layer schemes discussed in the previous section,

results in transport layer observing both erasures and errors.

272

Assuming uniform error distribution the packet loss rate at the
transport layer can be described using the following equation

())1()(1

)()1(1

linkCL
linkBERlinkBER

linkCL
linkBERTLPLR

−×+

−−=

where,
PLRTL = packet loss ratio at transport layer
BERlink = bit error ratio at link layer
CLlink = no: of bits covered by link CRC

When header protection is not used, the BERlink is the
residual BER after the demodulation and/or decoding at the
physical layer. On the other hand with header protection, the
BERlink is the decoder error probability of an FEC code at the
link layer. Here we assume the use of a Reed Solomon code,
whose upper bound decode error probability is given by

)2()1(
1

phyBER in
phyBER in

kni i
n

linkBER − −⋅⋅∑
+−=

=

where,
BERphy = bit error ratio after demodulation and
 decoding at physical layer
n = total encoded symbols
k = original source symbols (header bytes to
 protect)

Figure. 4. shows the packet loss ratios at the transport layer

using various link layer schemes. Two observations were
made from this analysis. Firstly, although header compression
improves the probability of packet delivery when compared to
the scheme without header compression, e.g. approx. 42% for
BER 10-3, this gain margin decrease as the link layer BER
increases.

Figure. 4. Bit errors in transport layer for different schemes

Secondly, with a code rate of 0.3, i.e. an additional

overhead of 80 bytes in the form of parity symbols, the
scheme with header compression and protection outperformed
the other schemes by orders of magnitude. The use of header
compression and protection not only reduces the protocol
header overhead, but the additional protection ensures that the
errors in the compressed header are corrected. An error-

erasure correction code (e.g. [19]) can be used by FLUTE to
correct residual bit errors in its payload.

III. NETWORK SECURITY

In the framework of Internet security, IETF has

standardized the IP security protocol (IPsec) [20] with the aim
to offer inter-operable cryptographically-based security
services (confidentiality, authentication, integrity and non-
repudiation) while continuing to use the existing
infrastructures.

Such services are provided through an authentication

protocol, named Authentication Header (AH) [21] a
confidential protocol, named Encapsulating Security Protocol
(ESP) [22] and an Internet Security Association Establishment
and Key Management Protocol (ISAKMP) [23]. These
protocols have been designed as an IPv4 upgrade and as
predefined security for IPv6.

The used cryptographic/authentication algorithm and keys

of the IPsec services are defined through Security
Associations (SAs). A single SA can support the use of AH or
ESP, but not both. IPsec operates in two modes: transport and
tunnel mode. The former is used between end-systems and
adds a new header (AH or ESP) to the IP guaranteeing the
protection of the IP payload. In tunnel mode, on the other
hand, the end-system delegates the security service to the
gateway. In this mode, AH or ESP header encapsulates the
entire IP packet and a new IP encapsulation is formed, whose
destination and source addresses can be different from those of
the encompassing IP packet.

AH jointly provides authentication and integrity by adding

to the protected datagram an additional block, called “Integrity
Check Value” (ICV), which can be either a Message
Authentication Code (MAC) or a digital signature. AH format
presents the following fields:

• Next Header (1 byte) It defines the type of the payload

that follows immediately the AH header (i.e., UDP,
TCP);

• Payload length (1 byte) It indicates the length of the AH
payload;

• Reserved (2 bytes) This field is reserved for future use;
• SPI field (4 bytes) The Security Parameter Index field is

used to identify the appropriate SA;
• Sequence Number (4 bytes) Sequence Number used for

anti-replay;
• Authentication Data (variable) Authentication data using

at least HMAC-MD5 and HMAC-SHA1.

ESP ensures the confidentiality service, by adding to the
field used in AH, the following fields:

273

• Initialization Vector Vector used by the ESP encryption
algorithms.

• Padding Padding bits are used to align the payload and
the payload and the two following fields on a 32 bit
boundary, as requested by the encryption algorithm.

• Padding length It indicates the size of the used padding
(in bytes).

B. Cross-Layer IPsec for UDP-Lite
Traditional IPsec authenticates (and optionally encrypts) the

entire IP payload. This means that corruption of any part of
the IP payload causes authentication failure and results in
packet drop. In other words, IPsec assumes that the entire IP
payload is sensitive to unauthorized bit changes (due to either
bit errors or malicious attacks). This conflicts with UDP-Lite
behaviour which can tolerate bit errors in its payload.

The proposed Cross Layer IPsec (CL-IPsec) aims to adapt

IPsec for UDP-Lite based applications. The behaviour of CL-
IPsec is dependent on the cross layer signalling between
network layer and higher layers. Specifically, IPsec needs to
receive both explicit signalling from application, indicating
the use of UDP-Lite, and implicit signalling from transport
layer to get the coverage length value and then perform the
security operations accordingly.

Considering the AH protocol in transport mode, and based

on the aforementioned signalling scheme, a CL-IPsec scheme
of implementation is shown in Figure. 5. where the insensitive
part only involves the RMT payload. It allows partial
authentication involving only AH, UDP-Lite and other
sensitive bytes. To achieve this, the input of the ICV algorithm
should be modified in order to consider only the following
fields: new IP header (if IPsec is running in tunnel mode), AH
header, IP header (excluded the mutable fields: Flags,
Fragment Offset, Time to Live and Header Checksum [21])
and the sensitive part of the UDP-Lite packet. In this way,
even though bits belonging to the insensitive part are
corrupted, IPsec forwards the packet to the higher layers. CL-
IPsec adaptation allows accessing the checksum coverage field
within the UDP-Lite header through an implicit cross-layer
interaction with the transport layer. Such an interaction is
possible because the position of the checksum coverage is
fixed within the UDP-Lite header and a priori knowledge of
the AH header size. Note that IPsec is in general not able to
distinguish IP header and IP payload.

Once checksum coverage is made evident to AH, it is

possible to change the input of ICV algorithm accordingly. In
case the ESP protocol is used, without exploiting its
cryptographic service, the CL-IPsec approach requires
modifications in order to take into account the presence of the
ESP trailer. On the other hand, if confidentiality is required,
the distinction of a sensitive and an insensitive part does not
make sense.

Figure. 5. Partial Authentication using CL-IPsec in Transport mode

B. Header compression for IPsec
IPsec provides various security services at the cost of

increased overhead. Especially in the tunnel model, the IPsec
overhead implies inefficient bandwidth utilization [24, 25].
This drawback can be mitigated by using Header Compression
(HC) protocols. Header compression over IPsec (HCoIPsec)
[24] aims to reduce overhead, without compromising the
security services provided by IPsec. HCoIPsec framework
relies on two assumptions:

1. Existing HC protocols are considered;

2. HC protocols operate at the IPsec SA endpoints (HC

applied in a SA basis).

Since existing HC protocols compress packets on a hop-by-
hop basis, HCoIPsec requires the extension of the HC
functionalities in order to operate at IPsec SA endpoints.
Furthermore, HCoIPsec framework proposes that the
configuration of the HC parameters is accomplished by the SA
management protocol (i.e. IKEv2 [23] while compressed
packet can be identified through the Next Header field of the
security protocol (AH or ESP).

Performing HCoIPsec, outbound IP traffic is first

appropriately compressed and then encrypted/authenticated.
Similarly, inbound IP traffic is first decrypted/authenticated
and then decompressed [24]. An example concerning AH in
tunnel mode is shown in Figure. 6.

Figure. 6. HCoIPSec Example: AH in tunnel mode

274

IV. CONCLUSION & FUTURE WORK

In the first half of this paper we have focused on the

different link layer designs that are applicable for multimedia
as well as multicast applications using cross layer architecture.
The impact of different link layer designs on the packet loss
ratio at the transport layer was studied. The results have shown
that the scheme using a combination of header compression
and protection with partial link checksum outperforms other
schemes by orders of magnitude. This conclusion achieved
using numerical model is also coherent with the findings in
[12, 26]

The second half of this paper identified the drawback of

using IPsec for applications designed for UDP-Lite protocols.
To alleviate the problem, we have proposed a cross layer
signalling scheme which ensures that only the IP header and
the sensitive bytes identified by the coverage length of the
UDP-Lite is authenticated by the ICV algorithm. This scheme,
however, works with only AH or with ESP with authentication
and no encryption. When ESP uses encryption, it implies that
all the parts in the IP payload is sensitive to change (due
malicious attack or bit errors). Hence such cases are ignored in
our proposed cross layer architecture.

As part of the future work, we will investigate the impact

of various link layer schemes on FLUTE protocol. Initially
FLUTE will be modified to use error and erasure correction
codes, following this a header compression profile, either
based on [18] or other techniques will be considered.

The IPsec implementation in Linux Kernel 2.6.20 will be

modified to the CL-IPsec protocol. Furthermore based on a
header compression algorithm, CL-IPsec will also be adapted.

ACKNOWLEDGEMENT

This work is part of a joint collaboration between the
University of Aberdeen and University of Rome “Tor
Vergata”. This work is funded as part of the JA2240 work
package of the European IST-FP6 project: “SatNEx II –
Satellite Communications Network of Excellence II”.

REFERENCES
[1] 3GPP TS 26.091:, "Mandatory speech codec speech processing functions;
AMR speech codec; error concealment of lost frames," Tech. Rep. 26.091
V6.0.0, 2004.
[2] D. Marpe, T. Wiegand and G.J. Sullivan, "The H.264/MPEG4 Advanced
Video Coding Standard and its Applications," IEEE Communications
Magazine, vol. 44, pp. 134-143, August 2006.
[3] J. Postel, "User datagram protocol," IETF, Tech. Rep. RFC 768, August,
1980.
[4] J. Wen and J.D. Villasenor, "Reversible variable length codes for efficient
and robust image and video coding," in In Proceedings of IEEE Data
Compression Conference, Apr 1998, pp. p.g. 471-480.
[5] L-A. Larzon, M. Degermark, S. Pink, L-E. Jonsson and G. Fairhurst, "The
lightweight user datagram protocol (UDP-lite)," IETF, Tech. Rep. RFC 3828,
July, 2004.
[6] W. Stanislaus, G. Fairhurst and J. Radzik, "Cross layer techniques for
flexible transport protocol using UDP-lite over a satellite network," in 2005,

pp. 706- 710.
[7] M. Rossi, "Evaluating TCP with Corruption Notification in an IEEE
802.11 Wireless LAN," M.S Thesis, Institute of Computer Science,
University of Innsbruck. November 2006.
[8] L-A. Larzon, M. Degermark and S. Pink, "UDP lite for real time
multimedia applications," in June 1999,
[9] A. Servetti and J.C. De Martin, "Error tolerant MAC extension for speech
communications over 802.11 WLANs," in In Proceedings of IEEE 61st
Semiannual Vehicular Technology Conference (VTC), May 2005, pp. p.g.
2330-2334.
[10] E. Masala, M. Bottero and J.C. De Martin, "Link-level partial checksum
for real-time video transmission over 802.11 wireless networks," in In
Proceedings of 14th International Packet Video Workshop (PVW), Dec 2004,
[11] F. Arnal, L. Dairaine, J. Lacan and G. Maral, "Cross-layer reliability
management for multicast over satellite," Computer Networks and ISDN
Systems, vol. No. 48, pp. p.g. 29-43, May 2005.
[12] M.G. Martini, M. Mazzotti, C. Lamy-Bergot, J. Huusko and P. Amon,
"Content adaptive network aware joint optimization of wireless video
transmission," Communications Magazine, IEEE, vol. Vol. 45, pp. p.g. 84-90,
Jan. 2007.
[13] C. Bormann, C. Burmeister, M. Degermark, H. Fukushima, H. Hannu, L-
E. Jonsson, R. Hakenberg, T. Koren, K. Le, Z. Liu, A. Martensson, A.
Miyazaki, K. Svanbro, T. Wiebke, T. Yoshimura and H. Zheng, "RObust
header compression (ROHC): Framework and four profiles: RTP, UDP, ESP,
and uncompressed," IETF, Tech. Rep. RFC 3095, July 2001.
[14] J.L. Massey, "Joint source and channel coding," in Communication
Systems and Random Process Theory, NATO Advanced Studies Institutes
Series E25 J. K. Skwirzynski editor, Ed. Sijtho & Noordho , Alphen aan den
Rijn, The Netherlands: 1978, pp. p.g. 279-293.
[15] G. Fairhurst, M. Berioli and G. Renker, "Cross-layer control of adaptive
coding and modulation for satellite Internet multimedia," International
Journal of Satellite Communications and Networking, vol. 24, pp. 471-491,
2006.
[16] T. Paila, M. Luby, R. Lehtonen, V. Roca and R. Walsh, "FLUTE - file
delivery over unidirectional transport," IETF, Tech. Rep. RFC 3926, October,
2004.
[17] G. Fairhurst and B. Collini-Nocker, "Unidirectional lightweight
encapsulation (ULE) for transmission of IP datagrams over an MPEG-2
transport stream (TS)," IETF, Tech. Rep. RFC 4326, December 2005.
[18] R. Walsh, J-P. Luoma and A. Saaranen, "Method and System for header
compression," US. US 2005/0160184 A1, July 21, 2005.
[19] R.M. Zaragoza, "http://www.eccpage.com/," Aug 21, 2006. 2006.
[20] K. Seo and S. Kent. (Dec. 2005, Security architecture for the internet
protocol. IETF,
[21] S. Kent, "IP authentication header," IETF, Tech. Rep. RFC 4302,
December 2005.
[22] S. Kent, "IP encapsulating security payload," IETF, Tech. Rep. RFC
4303, December 2005.
[23] C. Kaufman, "Internet key exchange (IKEv2.0)," IETF, Tech. Rep. RFC
4306, December 2005.
[24] E. Ertekin, C. Christou, R. Jasani and B.A. Hamilton, "Integration of
header compression over IPsec security associations," IETF, Tech. Rep.
Internet-Draft, draft-ietf-rohc-hcoipsec-04, February 2006.
[25] M. Luglio and C. Roseti, "Network security and performance evaluation
of ML-IPSec over satellite networks," in In Proceedings 12th Ka and
Broadband Comunications Conference, Sep 2006,
[26] F. Arnal, L. Dairaine, J. Lacan and G. Maral, "Multi-protocol header
protection (MPHP), a way to support error-resilient multimedia coding in
wireless networks," in High Speed Networks and Multimedia
Communications, 7th IEEE International Conference, HSNMC 2004, July 2
2004, pp. 740-749.

275

