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Abstract- Traditional modular layering schemes have served a 
major part in the development of a variety of protocols. However, 
as the physical layer impairments become more unpredictable, a 
cross layer design (CLD) which is dynamic in nature provides 
better performance. CLD introduces new challenges in protocol 
design as well as in the area of security.  
 

Using numerical analysis, we show that a link layer design 
employing header compression and cross layer signalling to 
protect protocol headers can limit packet discarding. This paper 
also reviews the IPsec protocol and describes how IPsec can be 
modified for cross layer architecture. 
 
Key words: Cross layer, UDP-Lite, IPsec, CL-IPsec, Header 
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I. INTRODUCTION 
 

Traditionally network systems design has followed the 
Open Systems Interface (OSI) model. In this model the 
complex task of host-to-host networking is divided into 
different logical layers, and information is passed between 
adjacent logical layers through a specific interface (service 
access point). Today a variety of communication mediums 
(wired and/or wireless) are used to relay information. This 
heterogeneity in the network infrastructure may cause 
information to be lost due to either erratic channel behaviour 
(e.g. scintillation errors, signal fade etc.) or a processing glitch 
in the intermediate systems. To cope with such dynamic 
behaviours, next generation network systems design needs a 
reference model that is more flexible. One such model is the 
Cross Layer Architecture (CLA).  

 
CLA in a “nut-shell” can be defined as a design approach 

where, non-adjacent layers of an OSI reference model co-
ordinate in order to optimize system performance. This design 
approach contradicts the OSI reference model, where the 
protocols in different layers function independent to each 
other and only adjacent layers can communicate with one 
another through well known interfaces. In a CLA, it is 
assumed that the layer(s) can tolerate errors to a certain 
magnitude in parts of its payload.  Modern multimedia codecs 
(e.g. AMR [1], H.264 [2]) are designed to be error resilient. 
Other applications such as reliable multicast transport can use 
various error/erasure correction codes to protect against 
channel impairments.  

 
Today UDP is the preferred transport protocol to deliver 

multimedia as well as multicast packets over the Internet. 

However, due to its stringent error check, even single bit error 
may lead to packet loss.  A transport protocol called UDP-
Lite, that uses partial checksum, was therefore designed to 
alleviate this inherent problem of UDP. UDP-Lite inspects 
error on only part of the packet identified as sensitive to errors 
by the checksum coverage field, and ignores errors in the 
remaining parts of the packet. However to take advantage of 
UDP-Lite, modifications are required at the lower layers to 
allow corrupted packets to be delivered to the higher layers. 
Security is paramount in today’s Internet. A security 
architecture that is compliant with UDP-Lite needs to be 
considered.  

 
The structure of this paper is as follows: the next section 

introduces the difference between UDP and UDP-Lite. This 
section also explains the various link layer modifications that 
are required when using UDP-Lite. Section 3 describes a 
security architecture using IPsec that is compliant with a CLA 
approach using UDP-Lite. This section also addresses the use 
of header compression with IPsec. Conclusion and future work 
is explained in Section 4. 

 
II. UDP Vs. UDP-Lite 

 
Due to its low protocol overhead (8 bytes) and processing 
overhead User Datagram Protocol [3] has found its usage in 
various delay sensitive as well as streaming application. Many 
of these applications can tolerate bit errors in the data payload 
better than the loss of a full packet. For instance modern 
audio/video codec such as Reversible Variable Length Codes 
(RVLC) [4] can extract useful information from blocks of 
corrupt data to conceal the effect of error. This can yield a 
better degree of visual or audio experience. Other examples 
are reliable multicast protocols which can employ packet-level 
forward error correction (FEC) codes to reliably recover from 
errors and/or erasures.  However due to the strict error check 
provided by UDP the entire packet will be dropped in case of 
bit errors. To solve this problem the IETF standardized a 
protocol called UDP-Lite [5]. As shown in Figure. 1 the 
difference between UDP and UDP-Lite is that the 16-bit 
Length field in the UDP is replaced by a 16-bit Checksum 
Coverage field. 
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Figure. 1. UDP-Lite header 

 
When using UDP-Lite, a packet is divided into sensitive 

and insensitive parts. An application uses the Checksum 
Coverage field, to indicate the number of bytes from the start 
of the UDP-Lite header that are to be considered sensitive to 
bit errors.  Since the receiver only calculates checksum over 
the sensitive part any bit errors in the insensitive portion of the 
packet is ignored. The minimum coverage length is 8 bytes, 
which only includes the UDP-Lite header whereas a coverage 
equal to zero indicates that the checksum covers the entire 
packet [5]. 

 
A. Limit packet discarding using UDP-Lite 
 

Work described in [6] has shown the advantage of using 
UDP-Lite. However to achieve this it is important that the 
sensitive bytes are delivered error-free. [7] has shown that, it 
is common for a packet header to be corrupt. For reliable 
delivery of sensitive bytes, following techniques can be used: 

 
Header compression and Partial checksum:- When using 

UDP-Lite it is essential that the lower layers do not drop the 
packet due to errors in the insensitive part. A partial error 
detection scheme, as shown in Figure. 2, is therefore required 
at the lower layers (e.g. link layer). Implicit cross layer 
signalling techniques can be used to modify link layer to 
provide partial error check. 

 

 
Figure. 2.  Partial checksum by link layer 

 
Works described in [8-10]have shown that using a partial 

checksum scheme, which detects error in the link layer header 
and the sensitive part of the frame improves the probability of 
packet delivery to the higher layers.  

 
In some applications the overhead due to protocol headers 

can be larger than the application data itself (e.g. VoIP).  Such 
an over head can be reduced by use of compression algorithms 
such as RoHC, IPHC, etc. Performing HC over sensitive bytes 
not only reduces the channel utilization, but it also reduces the 
probability of errors in sensitive bytes. 

 
Header compression with partial checksum and Header 

Protection: - In case of networks where error patterns vary 
rapidly with time (e.g. mobile satellite nodes), the sensitive 
bytes can still be in error [7]. One way of protecting the 
sensitive bytes is by using a strong forward error correction 

(FEC) code. The work described in [11] has shown in detail 
how such a scheme can be useful for both error-tolerant 
applications as well as for bulk data transfer. The model 
described here uses a combination of header compression, 
partial checksum and header protection as illustrated in Figure 
3.  

 
 A sample architecture that uses this technique is given in 

[12], where Robust Header Compression (RoHC) [13] was 
used to compress the protocol headers (RTP/UDP/IPv6) and 
Joint Source Channel coding and decoding (JSCC/D)[14] was 
used to provide the necessary error protection of the sensitive 
bytes at the physical layer. 

 

 
Figure 3. MPHP with HC 

 
Other mechanisms, as described in [15] have been 

proposed, where the a packet is divided into different frames, 
based on the sensitivity information from the link layer, and a 
higher coding and modulation is used for the sensitive parts 
w.r.t. insensitive parts. A process to de-multiplex these frames 
needs to be designed. 

 
B. Packet loss analysis for various schemes 
 

To evaluate the performance of the above schemes, we 
compute the packet loss ratio at the transport layer as a result 
of the varying link layer bit error rates (BER). For the purpose 
of analysis, we have considered the use of a reliable multicast 
protocol called FLUTE [16] over UDP-Lite and the link layer 
protocol considered is the Unidirectional Lightweight 
Encapsulation (ULE)[17].  

 
The coverage length at the link layer include the ULE 

header (4 bytes), IP header (20 bytes), UDP-Lite header (8 
bytes), FLUTE header (including extension headers, 44 bytes) 
and the link checksum (4 bytes), which is a total of 80 bytes.  
In the schemes using header compression the coverage length 
can be reduced to 40 bytes, i.e. compressing the IP/UDP-Lite 
header to 4 bytes [6], the FLUTE general header and the 
extension headers can be compressed to 28 bytes based on the 
methods described in [18]. The remaining 8 bytes corresponds 
to the uncompressed link header and CRC-32. 

 
The link layer schemes discussed in the previous section, 

results in transport layer observing both erasures and errors. 
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Assuming uniform error distribution the packet loss rate at the 
transport layer can be described using the following equation 
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where, 
PLRTL   = packet loss ratio at transport layer 
BERlink  = bit error ratio at link layer 
CLlink = no: of bits covered by link CRC 
 

When header protection is not used, the BERlink is the 
residual BER after the demodulation and/or decoding at the 
physical layer. On the other hand with header protection, the 
BERlink is the decoder error probability of an FEC code at the 
link layer. Here we assume the use of a Reed Solomon code, 
whose upper bound decode error probability is given by  
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where, 
BERphy =  bit error ratio after demodulation and  
    decoding at physical layer 
n  = total encoded symbols 
k  = original source symbols (header bytes to  
     protect) 

 
Figure. 4. shows the packet loss ratios at the transport layer 

using various link layer schemes. Two observations were 
made from this analysis. Firstly, although header compression 
improves the probability of packet delivery when compared to 
the scheme without header compression, e.g. approx. 42% for 
BER 10-3, this gain margin decrease as the link layer BER 
increases.  

 

 
Figure. 4.  Bit errors in transport layer for different schemes 

 
Secondly, with a code rate of 0.3, i.e. an additional 

overhead of 80 bytes in the form of parity symbols, the 
scheme with header compression and protection outperformed 
the other schemes by orders of magnitude. The use of header 
compression and protection not only reduces the protocol 
header overhead, but the additional protection ensures that the 
errors in the compressed header are corrected. An error-

erasure correction code (e.g. [19]) can be used by FLUTE to 
correct residual bit errors in its payload. 

 
III. NETWORK SECURITY 

 
In the framework of Internet security, IETF has 

standardized the IP security protocol (IPsec) [20]  with the aim 
to offer inter-operable cryptographically-based security 
services (confidentiality, authentication, integrity and non-
repudiation) while continuing to use the existing 
infrastructures. 

 
Such services are provided through an authentication 

protocol, named Authentication Header (AH) [21] a 
confidential protocol, named Encapsulating Security Protocol 
(ESP) [22] and an Internet Security Association Establishment 
and Key Management Protocol (ISAKMP) [23]. These 
protocols have been designed as an IPv4 upgrade and as 
predefined security for IPv6. 

 
The used cryptographic/authentication algorithm and keys 

of the IPsec services are defined through Security 
Associations (SAs). A single SA can support the use of AH or 
ESP, but not both. IPsec operates in two modes: transport and 
tunnel mode. The former is used between end-systems and 
adds a new header (AH or ESP) to the IP guaranteeing the 
protection of the IP payload. In tunnel mode, on the other 
hand, the end-system delegates the security service to the 
gateway. In this mode, AH or ESP header encapsulates the 
entire IP packet and a new IP encapsulation is formed, whose 
destination and source addresses can be different from those of 
the encompassing IP packet. 

 
AH jointly provides authentication and integrity by adding 

to the protected datagram an additional block, called “Integrity 
Check Value” (ICV), which can be either a Message 
Authentication Code (MAC) or a digital signature. AH format 
presents the following fields: 

 
• Next Header (1 byte) It defines the type of the payload 

that follows immediately the AH header (i.e., UDP, 
TCP); 

• Payload length (1 byte) It indicates the length of the AH 
payload; 

• Reserved (2 bytes) This field is reserved for future use; 
• SPI field (4 bytes) The Security Parameter Index field is 

used to identify the appropriate SA; 
• Sequence Number (4 bytes) Sequence Number used for 

anti-replay; 
• Authentication Data (variable) Authentication data using 

at least HMAC-MD5 and HMAC-SHA1.  
 

ESP ensures the confidentiality service, by adding to the 
field used in AH, the following fields: 
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• Initialization Vector Vector used by the ESP encryption 
algorithms. 

• Padding Padding bits are used to align the payload and 
the payload and the two following fields on a 32 bit 
boundary, as requested by the encryption algorithm. 

• Padding length It indicates the size of the used padding 
(in bytes). 

B. Cross-Layer IPsec for UDP-Lite 
Traditional IPsec authenticates (and optionally encrypts) the 

entire IP payload. This means that corruption of any part of 
the IP payload causes authentication failure and results in 
packet drop. In other words, IPsec assumes that the entire IP 
payload is sensitive to unauthorized bit changes (due to either 
bit errors or malicious attacks). This conflicts with UDP-Lite 
behaviour which can tolerate bit errors in its payload. 

 
The proposed Cross Layer IPsec (CL-IPsec) aims to adapt 

IPsec for UDP-Lite based applications. The behaviour of CL-
IPsec is dependent on the cross layer signalling between 
network layer and higher layers. Specifically, IPsec needs to 
receive both explicit signalling from application, indicating 
the use of UDP-Lite, and implicit signalling from transport 
layer to get the coverage length value and then perform the 
security operations accordingly.  

 
Considering the AH protocol in transport mode, and based 

on the aforementioned signalling scheme, a CL-IPsec scheme 
of implementation is shown in Figure. 5. where the insensitive 
part only involves the RMT payload. It allows partial 
authentication involving only AH, UDP-Lite and other 
sensitive bytes. To achieve this, the input of the ICV algorithm 
should be modified in order to consider only the following 
fields: new IP header (if IPsec is running in tunnel mode), AH 
header, IP header (excluded the mutable fields: Flags, 
Fragment Offset, Time to Live and Header Checksum [21]) 
and the sensitive part of the UDP-Lite packet. In this way, 
even though bits belonging to the insensitive part are 
corrupted, IPsec forwards the packet to the higher layers. CL-
IPsec adaptation allows accessing the checksum coverage field 
within the UDP-Lite header through an implicit cross-layer 
interaction with the transport layer. Such an interaction is 
possible because the position of the checksum coverage is 
fixed within the UDP-Lite header and a priori knowledge of 
the AH header size. Note that IPsec is in general not able to 
distinguish IP header and IP payload. 

 
Once checksum coverage is made evident to AH, it is 

possible to change the input of ICV algorithm accordingly. In 
case the ESP protocol is used, without exploiting its 
cryptographic service, the CL-IPsec approach requires 
modifications in order to take into account the presence of the 
ESP trailer. On the other hand, if confidentiality is required, 
the distinction of a sensitive and an insensitive part does not 
make sense.  

 

 
Figure. 5. Partial Authentication using CL-IPsec in Transport mode 

          

B. Header compression for IPsec 
IPsec provides various security services at the cost of 

increased overhead. Especially in the tunnel model, the IPsec 
overhead implies inefficient bandwidth utilization [24, 25]. 
This drawback can be mitigated by using Header Compression 
(HC) protocols. Header compression over IPsec (HCoIPsec) 
[24] aims to reduce overhead, without compromising the 
security services provided by IPsec. HCoIPsec framework 
relies on two assumptions: 

 
1. Existing HC protocols are considered; 
 
2. HC protocols operate at the IPsec SA endpoints (HC 

applied in a SA basis).  
 

Since existing HC protocols compress packets on a hop-by-
hop basis, HCoIPsec requires the extension of the  HC 
functionalities in order to operate at IPsec SA endpoints. 
Furthermore, HCoIPsec framework proposes that the 
configuration of the HC parameters is accomplished by the SA 
management protocol (i.e. IKEv2 [23] while compressed 
packet can be identified through the Next Header field of the 
security protocol (AH or ESP). 

 
Performing HCoIPsec, outbound IP traffic is first 

appropriately compressed and then encrypted/authenticated.   
Similarly, inbound IP traffic is first decrypted/authenticated 
and then decompressed [24]. An example concerning AH in 
tunnel mode is shown in Figure. 6. 

 

 
Figure. 6. HCoIPSec Example: AH in tunnel mode 

 

274



 

IV. CONCLUSION & FUTURE WORK 
 
In the first half of this paper we have focused on the 

different link layer designs that are applicable for multimedia 
as well as multicast applications using cross layer architecture. 
The impact of different link layer designs on the packet loss 
ratio at the transport layer was studied. The results have shown 
that the scheme using a combination of header compression 
and protection with partial link checksum outperforms other 
schemes by orders of magnitude. This conclusion achieved 
using numerical model is also coherent with the findings in 
[12, 26] 

 
The second half of this paper identified the drawback of 

using IPsec for applications designed for UDP-Lite protocols. 
To alleviate the problem, we have proposed a cross layer 
signalling scheme which ensures that only the IP header and 
the sensitive bytes identified by the coverage length of the 
UDP-Lite is authenticated by the ICV algorithm. This scheme, 
however, works with only AH or with ESP with authentication 
and no encryption. When ESP uses encryption, it implies that 
all the parts in the IP payload is sensitive to change (due 
malicious attack or bit errors). Hence such cases are ignored in 
our proposed cross layer architecture.  

 
As part of the future work, we will investigate the impact 

of various link layer schemes on FLUTE protocol. Initially 
FLUTE will be modified to use error and erasure correction 
codes, following this a header compression profile, either 
based on [18] or other techniques will be considered.  

 
The IPsec implementation in Linux Kernel 2.6.20 will be 

modified to the CL-IPsec protocol. Furthermore based on a 
header compression algorithm, CL-IPsec will also be adapted. 
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