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Abstract 

Transmission Control Protocol is the layer 4 protocol over which all the Internet applications 
are based. The high latency severely limits performance, especially if high bandwidth is 
available. Due to the high Bandwidth Delay Product a long time to fill the pipe is needed. 
To counteract such impairments many solutions have been proposed and some of them are 
actually implemented in real systems. These solutions are based either on the modification of 
the mechanism, mainly the flow control, or on the architecture, mainly on splitting the 
connection, which may even include the use of proprietary protocols. In both cases, the 
features of the Operative Systems of the end machines play a very important role because the 
dimension of the available buffer determines the initial slow start threshold and in general 
limits the performance of the flow control mechanism.  
Moreover, real scenarios may include both a single TCP session and multiple session per link. 
In the former case performance are only limited by the latency and by the error rate while in 
the latter case the simultaneous sessions can further degrade overall performance if fairness 
and friendliness of different schemes are not so excellent.  
In this paper, after describing the main solutions proposed or adopted to improve TCP 
performance over satellite links, we will present the main results of the optimization of the 
buffer dimension. Then, we will analyze through simulations the performance of the main 
TCP schemes with respect to real OS in case of single flow per link. Finally, we approach a 
scenario with many TCP connections in competition for the available bandwidth in a satellite 
link. In fact, a fair sharing of resources is suitable in a best-effort Internet environment where 
there are competing TCP flows.  

1 Introduction 

TCP is the layer 4 protocol which ensures reliable end-to-end communication implementing 
the concept of the acknowledgement of the received data �[1]. When the end-to-end delay is 
high, as when a satellite link is part of the path, TCP performance rapidly decreases because 
the window takes a very long time to increase as well as the pipe to be filled. In order to 
improve TCP mechanism efficiency over the satellite links, many solutions can be adopted. 
Some of them are specifically proposed for satellite while others more general �[2].  
In any case, both efficient TCP algorithms and a powerful OS are needed to achieve good 
performance. In particular, the finite dimension of the receiving buffer (peculiar of the OS) 
impacts TCP performance. This feature is even more important if a very efficient TCP 
algorithm is implemented. In fact, the flow control mechanism aims at regulating the 
dimension of the sliding window but even though an efficient TCP algorithm were able to 
reach large windows the buffer length can strongly limit performance. 
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In this paper we investigate how the two aspects (flow control and OS features) impact TCP 
performance in a scenario including a satellite link as part of the end-to-end path. The 
optimization of the buffer size using different TCP algorithm has been carried out through 
simulations performed using ns2 tool �[3]. Performance of TCP over satellite links using 
different flow control mechanism and real OS have been carried out too and shown. 

2 TCP performance over satellite links 

Satellite systems characteristics have an impact on TCP performance well documented in 
�[4]�[5]�[6]�[7]. In fact, the higher latency with respect to terrestrial networks implies that it takes 
longer to reach the optimum window size while a higher packet loss can be experienced as a 
consequence of the greater BER in particular channel conditions. Furthermore, when the 
satellite provide wide band access the bandwidth x delay product becomes very large 
impacting the ramping time. 
To mitigate such impairments several countermeasures can be implemented both at physical 
level (mainly to reduce losses) and at network (including layer 4) level �[2]. In the next section 
the main solutions proposed or implemented to improve TCP performance will be described. 

3 Solutions to improve TCP performance 

The proposed or adopted solutions can be classified as follows: 
1. Lower level approach 
2. use of TCP implementing modified flow control mechanisms and options. 
3. modification of architecture introducing intermediate nodes in the network and 

implementing between the nodes standard or proprietary solutions. 

3.1 Lower Level mitigations 

To improve TCP performance on a satellite channel, it is recommended to use the following 
two non-TCP mechanisms: the “Path MTU Discovery” and the “Forward Error Correction” 
(FEC) �[2]�[4]. The first mechanism determines the maximum packet size a connection can use 
on a given link without being subject to IP fragmentation. On the other hand, to improve Bit 
Error Rate (BER) the forward error correction coding (FEC) can be used. 

3.2 Modified flow control solutions 

3.2.1 Congestion Control: Fast Retransmit and Fast Recovery.  
The fast retransmit and fast recovery (FR-FR) is a congestion control algorithm that allows to 
rapidly recover lost packets �[8]�[9]. In TCP the default mechanism to detect dropped packets is 
the timeout. During the timeout period, new or duplicate packets cannot be sent. With FR-FR, 
if the a packet is received out of sequence, a duplicate acknowledgement is sent to the source. 
If the sender receives three duplicate acknowledgements, it assumes that the corresponding 
packet is lost and: 1) sets ssthresh=0,5*cwnd, retransmits the missing packet, sets 
cwnd=ssthresh+(3*packet size); 2) each time another duplicate acknowledgement arrives, set 
cwnd=cwnd+1 packets and transmits a packet if allowed; 3) when an acknowledgement 
arrives for new packets: cwnd=ssthresh. FR-FR works very efficiently when there are many 
isolated packet losses. 

3.2.2 Window scaling 
The TCP header uses a 16-bit field to report the receiver window size to the sender. The 
standard maximum TCP window size is 65 kbytes and the TCP throughput is limited by the 
following formula: 

Throughput = window size / RTT 



For example, considering a geosynchronous satellite channel with an RTT of 500 ms the 
maximum throughput is limited to: 

Throughput = 65535 bytes / 500 ms ~ 1 Mbit/s 
Therefore, a single standard TCP connection cannot fully utilize the bandwidth available on 
some satellite channels. To circumvent the problem, the “Window Scale” option has been 
defined �[10]. Such an option expands the definition of the TCP window to 32 bits and then 
uses a scale factor to carry this 32-bit value in the 16-bit window field in the TCP header. 

3.2.3 Selective Acknowledgements (SACK)  
TCP uses a cumulative acknowledgement scheme in which received segments that are out of 
sequence are not acknowledged and the TCP sender can only learn about a single lost packet 
per round trip time. This forces the sender to either wait a RTT to realize if packets are lost, or 
to avoid to retransmit segments which have been correctly received. SACK is a strategy 
which allows TCP receivers to inform TCP senders exactly which packets arrived, and then to 
recover more quickly from lost packets avoiding needless retransmissions �[10]. 

3.2.4 TCP Westwood 
To improve the performance of the congestion control mechanism, a modification to the Fast 
Recovery algorithm has been proposed, named TCP Westwood (TCPW), requiring 
modifications only to the TCP sender �[12]�[13]. TCPW exploits two basic concepts: 1) the 
end-to-end estimation of the available bandwidth, and 2) the use of such estimate to set the 
slow start threshold and the congestion window after a packet loss. Using estimated 
bandwidth instead of packet loss feedback allows Westwood to more efficiently utilize 
network capacity especially in case of high-bandwidth and huge-delay. 

3.2.5 TCP Hybla 
In heterogeneous networks, TCP connections characterized by large RTT (i.e. including a 
satellite segment) present poor performance compared to the wired connections with short 
RTT. In fact, since the congestion window growth depends by the reception of feedback 
information (acknowledgements), a large RTT affects the throughput and the channel 
utilization. TCP Hybla �[14] proposes a modification of congestion control policy in order to 
accelerate the increase of congestion window (in both slow start and congestion avoidance 
phases) in the long RTT connections. 

3.3 Modified architecture solutions 

3.3.1 PEPs Performance Enhancing Proxies 
To improve the TCP performance on links characterized by high latency and high bandwidth-
delay product, instead of or in addition to protocol enhancements, several architectural 
enhancements, or middleware techniques have been proposed. This approach has been 
generalized to the so-called “Performance Enhancing Proxy” or PEP �[14]�[16]. Many PEPs 
techniques use a split connection TCP implementation in order to address a mismatch in TCP 
capabilities between two end-systems. For example, a “splitting” scheme involves segmenting 
the end-to-end connection into satellite and non satellite segments. This is useful for filling 
the satellite link which has a high bandwidth-delay product by turning on, for example, 
appropriated TCP option (i.e. “window scaling option” �[10]). Another PEP technique is based 
on “capturing” a TCP connection and intelligently processing data packets and 
acknowledgements. This approach is commonly referred to as “spoofing”. 



3.3.2 Snooping 
The snooping technique aims at improving the TCP performance in the links including 
wireless segments, when many of the assumptions made by TCP are violated �[17]. The snoop 
functions are based only on network-layer software modifications (snoop layer) at the 
basestation/gateway without breaking the TCP end-to-end semantic. In fact, the main idea is 
to cache packets and to monitor the acknowledgements flow at the basestation/gateway in 
order to carry out locally retransmissions. 

3.3.3 Early Bandwidth Notification (EBN) 
In order to improve the TCP performance in the today’s heterogeneous network with variable 
bandwidth, a modified network architecture has been proposed �[18]. The main idea is that an 
intermediate router measures the current bandwidth available to a TCP flow and feedback 
such information to the TCP sender. The TCP sender will use this information to adjust his 
congestion window size. To estimate the bandwidth there are several ways. The most 
common method is to keep track of all the input and output interfaces. 

3.3.4 Xpress Transport Protocol (XTP)  
The SkyX system replaces TCP over the satellite link with the Xpress Transport Protocol 
(XTP) designed for the long latency, high loss, asymmetric bandwidth, typical of satellite 
communications �[19]�[20]. The XTP is based on orthogonal protocol functions for separating 
communication paradigm (datagram, virtual circuit, transaction, etc.) from the error control 
policy employed, separation of rate and flow control, explicit first class for reliable multicast, 
and data delivery service independence. XTP regulates the data flow by end-to-end 
windowing flow control mechanism based on 64-bit sequence numbers and a 64-bit sliding 
window. XTP also provides rate control whereby an end-system or intermediate system can 
specify the maximum bandwidth and the burst size (maximum number of bytes to be sent in a 
burst of packets) that it will accept on a connection. Finally, error control incorporates 
positive and, when appropriate, negative acknowledgements to retransmit missing or damaged 
data packets. Retransmission may be either go-back-N or selective retransmission. 

3.3.5 Space Communication Protocol Standard (SCPS) 
The “Space Communication Protocol Standards” (SCPS) are a set of layered protocols 
optimized for the space segments �[21]. The SCPS can be used as an integrated protocol stack, 
or the individual protocols can be used in combination with Internet protocols. These 
protocols include: 1) A file handling protocol (SCPS-FP); 2) A retransmission control 
protocol (SCPS-TP); 3) A data protection mechanism (SCPS-SP); 4) A scalable networking 
protocol (SCPS-NP). In particular, the SCPS-TP is based on the Internet Transmission 
Control Protocol (TCP) �[22] and User Datagram Protocol (UDP) �[23], the Internet Host 
Requirements Document �[24], and the “TCP Extensions for High Performance” �[10]. SCPS-
TP has developed three capabilities to manage data loss due to transmission errors:  
1) Explicit Corruption Response. When a isolated data loss occurs, SCPS-TP maintains the 

transmission rate (controlled by the congestion window) and the retransmission timeout 
value unchanged.  

2) Selective Negative Acknowledgement (SNACK). The SNACK capability has been 
developed to identify specific data that requires retransmission, and to request immediate 
retransmission of that data.  

3) Header Compression. SCPS-TP defines a header compression capability to reduce the 
size of transmitted packets. This scheme is loss-tolerant, meaning that the loss of one 
packet does not render subsequent packets unintelligible. 



4 Simulation scenario 

Simulations have been performed using the well known and reliable NS-2 simulator. NS-2 is 
an object-oriented simulator widely adopted to reproduce network scenarios �[3]�[25], 
especially in new transport protocols investigation. In order to run our tests we used the 
version 2.1b8a. Moreover, we have added the code to simulate the behavior of TCP 
Westwood ABSE (Adaptive Bandwidth Share Estimation) �[25]. The main simulation 
parameters are the following: 

o MinRTT = 508 ms; 
o Packet Error Rate (PER) ∈  {0; 10-4; 10-3}; 
o TCP packet size = 1500 bytes; 
o Bandwidth = 4 Mbit/s; 
o Transport protocol: TCP New Reno vs. TCP Westwood ABSE. 

Moreover, the payload architecture is considered transparent. Simulations have run using 
different combinations of transport protocol schemes, various PER, and the default receiver 
buffer size considering the characteristics of real operating systems (Windows, Linux, BSD). 

5 Impact of receiver buffer size on the TCP Performance 

In the connections with large product bandwidth*delay a limited receiver buffer can affect the 
TCP performance. In fact, the “Advertised Receive Window” mechanism �[1] limits the 
maximum number of bytes that can be transmitted on the free space in the receiver buffer. To 
evaluate these effects the following parameters are considered: 
– A single TCP connection (TCP New Reno vs. TCP Westwood ABSE); 
– Low error rate (PER = 10-4); 
– typical default values of “maximum socket buffer size” enabled by the commercial OS: 

64 kByte (i.e. Window NT, Linux 2.4); 
128 kByte (i.e. Digital Unix 4.0); 
256 kByte (i.e. BSD/OS). 

The outcomes show that TCP Westwood performs overall better than TCP New Reno. In fact, 
since Westwood resets the congestion window (cwnd) after a packet lost at the bandwidth 
estimate value, it results more reactive to increase the transmission rate, and then to fill the 
pipe. Moreover, as shown in Figure 1, in every case Westwood reaches the maximum 
throughput allowed from the receiver buffer size, whereas New Reno is strongly limited by 
the transmission errors. 
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Figure 1: Receiver buffer optimization 



6 Multiple TCP connections: fairness and channel utilization 

The channel capability can be shared by several TCP flows. Basically, there are two 
parameters that must be monitored to evaluate the good utilization of the available resources: 
1. the fairness index; 
2. the total utilization of the channel. 
By considering a relevant packet error rate (5*10-5), we have analyzed how all the TCP 
connections share the total bandwidth through the Jain’s fairness index �[27]: 

Fairness_ Index =
xi�( )2

n xi( )2
�

 

where xi = Ti

O i

is the normalized average throughput for the connection i (Ti = measured 

average throughput, and Oi = fair average throughput), and n is the number of connections. 
On the other hand, we have calculated the total utilization of the channel as: 

Total_ utilitazion =
Ti�

B
 

where B is the channel bandwidth.  
In our simulations we have considered 5 TCP flows. As shown in Figure 2, both New Reno 
and Westwood share fairly the bandwidth between the different flows. More specifically, the 
Westwood flows reach an optimal average utilization of the channel, whereas the NewReno 
flows waste more than 60% of available bandwidth. 
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Figure 2: Fairness index and channel utilization 

7 TCP friendliness  

We have also considered a hybrid scenario where the satellite channel is shared by flows 
using different TCP schemes. Then, we have analyzed the bandwidth sharing among 5 New 
Reno flows and 5 Westwood ABSE flows, considering two cases: 
1. The 5 New Reno and 5 Westwood flows start simultaneously. We compared the 

bandwidth sharing with the case in which all the flows support TCP New Reno (Figure 3). 
2. Initially, 10 New Reno flows start simultaneously. After 500 seconds, 5 Westwood flows 

replace 5 New Reno flows. We analyzed the change of the average throughput of New 
Reno flows after the introduction of the Westwood flows (Figure 4). 



The outcomes in Figure 3 and Figure 4 show that Westwood flows are friendly with 
NewReno flows. In fact, as shown in Figure 2, in the case of 10 New Reno flows the average 
throughput for each flow is about 280 kbit/s and the total utilized bandwidth is 2.8 Mbit/s (1.2 
Mbit/s wasted). Instead, in the case of 5 Westwood flows and 5 NewReno flows, the average 
throughput for each NewReno flow decreases just of 90 kbit/s, whereas the Westwood flows 
utilize all the remaining bandwidth. Figure 3 emphasize this behavior when the transmission 
starts with 10 New Reno flows and after 500 seconds 5 Westwood replace 5 New Reno. 

0

100

200

300

400

500

600

0 50 100 150 200 250 300 350 400

Time (s)

A
ve

ra
ge

 th
ro

ug
hp

ut
 (k

bi
t/s

) 10NewReno
5NewReno
5Westwood

 
Figure 3: Friendliness with simultaneous flow start 
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Figure 4: Friendliness with differentiated flow start (WW delayed) 

Conclusions 
The paper describes and analyze many techniques proposed to improve performance of TCP 
over satellite links. In addition, significant evaluation of how different flows and different 
schemes work together over real OS have been carried out. 
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