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Abstract 

Transmission Control Protocol is the layer 4 protocol over which over 90% of the Internet applications are based. The high 
latency peculiar of satellite links causes severe degradation of performance, especially if high bandwidth is available. In 
fact, due to the high Bandwidth Delay Product the pipe requires a long time to fill. 

To counteract such impairments many solutions have been proposed and some of them are actually implemented in real 
systems. These solutions are based either on the modification of the TCP algorithm, mainly the flow control and the 
recovery, or on the architecture, mainly on splitting the connection (eg, PEP – Performance Enhancing Proxies), which may 
even include the implementation of proprietary solutions. In both cases, the features of the Operating Systems in the end 
machines play a very important role because the size of the available buffer pool determines the initial slow start threshold 
and in general limits the performance of the flow control mechanism. 

In this paper we describe the main solutions proposed or adopted to improve TCP performance over satellite links and 
analyze through simulations their performance with respect to existing OSs. The optimization of the buffer dimension has 
been performed too and the main results are presented. 
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1 Introduction 

TCP is the layer 4 protocol which ensures reliable end-to-
end communication implementing the concept of the 
acknowledgement of the received data [1]. When the end-
to-end delay is high, as when a satellite link is part of the 
path, TCP performance rapidly decrease because the 
window takes a very long time to increase as well as the 
pipe to be filled. Nevertheless, the satellite assumes a 
meaningful role to allow the access to the 
telecommunication networks in very remote location and 
is irreplaceable where terrestrial infrastructures are scarce 
or absent, where it represents the only means to 
communicate (long range mobile services, maritime, 
aeronautical environment) or when terrestrial 
infrastructures may be damaged or out of order due to 
disasters. 

In order to improve TCP mechanism efficiency over the 
satellite links, many solutions can be adopted. Some of 
them are specifically proposed for satellite while others 
for more general environment [2]. Many proposals are 
based on the modification of the flow control (e.g. 
enlarging the dimension of the initial window, reducing 
the number of acknowledgments), of the recovery 
mechanism (dynamic estimation the available bandwidth, 
etc.); others are based on the modification of the 
architecture (e.g. splitting the path and terminating 
connection at each step acknowledging packet reception). 
Among the latter typology of solutions some adopt 
standard algorithms or a modified version while there are 
solutions based on proprietary standard implemented in 
real systems. 

In any case, both efficient TCP algorithms and a powerful 
OS are needed to achieve good performance. In 
particular, the finite dimension of the receiving buffer 
size is the characteristic of the OS which impacts TCP 
performance. This feature is even more important if a 
very efficient TCP algorithm is implemented. In fact, the 
flow control mechanism aims at regulating the dimension 
of the sliding window but even though an efficient TCP 
algorithm were able to reach large windows the buffer 
length can strongly limit performance. 

In this paper we investigate how the two aspects (flow 
control and OS features) impact TCP performance in a 
scenario including a satellite link as part of the end-to-end 
path. The optimization of the buffer size using different 
TCP algorithm has been carried out through simulations 
performed using ns2 tool [3]. Performance of TCP over 
satellite links using different flow control mechanism and 
real OS have been carried out too and shown. 

In particular, in section 2 performance of TCP in satellite 
environment will be analyzed, in section 3 the main 
solution to improve performance will be described and 
analyzed, in section 4 the features of OS impacting TCP 
performance will be highlighted and some real OS will be 
shown as examples, in section 5 the simulation scenario 
will be described, in section 6 the results of the OS buffer 

optimization will be shown and discussed, in section 7 
the performance of TCP with different OS using two 
different flow control mechanisms will be shown and 
finally in the last section conclusions will be drawn. 
 
2 TCP performance over satellite links 

Satellite systems can use the geostationary orbit (GEO) or 
Low Earth Orbit (LEO). Different satellite architectures 
show different performance. In fact, GEO constellation 
are characterized by very high delay (RTT � 550 ms) 
which can vary in  the order of about 20 ms as a function 
of the earth station location in the coverage area. In 
addition, the great distance implies also high free space 
losses which can increase BER. LEO constellation are 
characterized by shorter distance with respect to GEO 
(RTT � 20 -50 ms) but the variability, depending on 
satellite movement, can be greater and more dynamic. 
The free space losses are reduced too. In addition, 
frequent handover represents a critical aspect that must be 
carefully taken into account. 

In both cases, the two implications have an impact on 
TCP performance [4][4][6][7]. In fact, the higher latency 
with respect to terrestrial networks implies that it takes 
longer to reach the optimum window size while a higher 
packet loss can be experienced as a consequence of the 
greater BER in particular channel conditions. 
Furthermore, when the satellite provide wide band access 
the bandwidth x delay product becomes very large 
impacting the ramping time. 

To mitigate such impairments several countermeasures 
can be implemented both at physical level (mainly to 
reduce losses) and at network (including layer 4) level 
[2]. In the next section the main solutions proposed or 
implemented to improve TCP performance will be 
described. 
 
3 Solutions to improve TCP performance 

The impairments experienced at TCP level on a satellite 
link can be mitigated using different approaches. The 
proposed or adopted solutions can be classified as 
follows: 

1. Lower level approach 

2. use of TCP over the satellite link, implementing 
modified flow control mechanisms and options. 

3. break TCP semantics introducing intermediate nodes 
in the network and implementing between the nodes 
standard or proprietary solutions. 

3.1 Lower Level mitigations 

To improve TCP performance on a satellite channel, it is 
recommended to use the following two non-TCP 
mechanisms: the “Path MTU Discovery” and the 
“Forward Error Correction” (FEC) [2][4]. The first 
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mechanism determines the maximum packet size a 
connection can use on a given link without being subject 
to IP fragmentation. In fact, if the packet is too large to be 
forwarded, the gateway fragments the packet and 
forwards the fragments. Instead, with the Path MTU 
discovery mechanism, an ICMP message is returned to 
the sender to indicate that the original packet could not be 
transmitted without being fragmented and also to report 
the largest packet size that can be forwarded by the 
gateway. In this way, the packet overhead is reduced and 
TCP senders can increase the congestion window more 
rapidly (in terms of bytes). On the other hand, the most 
important problem for developers of TCP in satellite 
network is high Bit Error Rate (BER). TCP’s strategy 
considers all packet drops as signals of network 
congestion and reduces its window size in an attempt to 
alleviate the congestion. Therefore, packets dropped due 
to corruption cause TCP to reduce the size of its sliding 
window, even though these packet drops not for network 
congestion. This reaction is unwanted because it results in 
throughput loss. Then, the TCP operates efficiently when 
nearly all loss is due to network congestion. To such 
purpose, the forward error correction coding (FEC) can 
be used to improve the bit-error rate in satellite 
environments. 

3.2 Modified flow control solutions 

3.2.1 Congestion Control: Fast Retransmit and 
Fast Recovery.  

The fast retransmit and fast recovery (FR-FR) is a 
congestion control algorithm that allows to rapidly 
recover lost packets [8][9]. In TCP the default mechanism 
to detect dropped packets is the timeout. During the 
timeout period, new or duplicate packets cannot be sent. 
With FR-FR, if the a packet is received out of sequence, a 
duplicate acknowledgement is sent to the source. If the 
sender receives three duplicate acknowledgements, it 
assumes that the corresponding packet is lost and: 1) sets 
ssthresh=0,5*cwnd, retransmits the missing packet, sets 
cwnd=ssthresh+(3*packet size); 2) each time another 
duplicate acknowledgement arrives, set cwnd=cwnd+1 
packets and transmits a packet if allowed; 3) when an 
acknowledgement arrives for new packets: 
cwnd=ssthresh . FR-FR works most efficiently when there 
are many isolated packet losses. 

3.2.2 Large TCP Windows  

The TCP header uses a 16-bit field to report the receiver 
window size to the sender. The standard maximum TCP 
window size is 65 kbytes and the TCP throughput is 
limited by the following formula: 

Throughput = window size / RTT 

For example, considering a geosynchronous satellite 
channel with an RTT of 500 ms the maximum throughput 
is limited to: 

Throughput = 65535 bytes /  500 ms ~ 1 Mbit/s 

Therefore, a single standard TCP connection cannot fully 
utilize the bandwidth available on some satellite 
channels. To circumvent the problem, the “Window 
Scale” option has been defined. Such an option expands 
the definition of the TCP window to 32 bits and then uses 
a scale factor to carry this 32-bit value in the 16-bit 
window field in the TCP header. 

3.2.3 Selective Acknowledgements (SACK)  

TCP uses a cumulative acknowledgement scheme in 
which received segments that are out of sequence are not 
acknowledged and the TCP sender can only learn about a 
single lost packet per round trip time. This forces the 
sender to either wait a RTT to realize if packets are lost, 
or to avoid to retransmit segments which have been 
correctly received. SACK is a strategy which allows TCP 
receivers to inform TCP senders exactly which packets 
have arrived, and then to recover more quickly from lost 
packets avoiding needless retransmissions [10]. 

3.2.4 TCP Westwood 

The TCP end-to-end control is based on implicit 
feedback, such as timeouts, duplicate acknowledgements, 
round trip measurements. But, when losses occur, TCP 
cannot distinguish between congestion losses and 
transmission losses and, interpreting this event always as 
a network congestion, activates algorithms which reduce 
outgoing data stream. To improve the performance of the 
congestion control mechanism, an improvement to the 
Fast Recovery algorithm has been proposed, named TCP 
Westwood (TCPW), requiring modifications only to the 
TCP sender [11][12]. TCPW exploits two basic concepts: 
1) the end-to-end estimation of the available bandwidth, 
and 2) the use of such estimate to set the slow start 
threshold and the congestion window after a packet loss. 
Using estimated bandwidth instead of packet loss 
feedback allows Westwood to more efficiently utilize 
network capacity especially in case of high-bandwidth 
and huge-delay. 

3.3 Modified architecture solutions 

3.3.1 PEPs Performance Enhancing Proxies 

To improve the TCP performance on links characterized 
by high latency and high bandwidth-delay product, 
instead of or in addition to protocol enhancements, 
several architectural enhancements, or middleware 
techniques have been proposed. This approach has been 
generalized to the so-called “Performance Enhancing 
Proxy” or PEP [13][14][15][16]. Many PEPs techniques 
use a split connection TCP implementation in order to 
address a mismatch in TCP capabilities between two end-
systems. For example, a “splitting” scheme involves 
segmenting the end-to-end connection into satellite and 
non satellite segments. This is useful for filling the 
satellite link which has a high bandwidth-delay product 
by turning on, for example, appropriated TCP option (i.e. 
“window scaling option” [17]). Another PEP technique is 
based on “capturing” a TCP connection and intelligently 
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processing data packets and acknowledgements. This 
approach is commonly referred to as “spoofing”. 

In the frame of PEP implementation, if a link is 
composed by both a terrestrial and a satellite segment, it’s 
possible to consider a particular architecture in which a 
gateway intercepts the TCP connection from the sender 
and converts the data to the optimized protocol for 
transmission over the satellite, and another gateway on 
the opposite side of the satellite link translates the data 
back to TCP for communication with the receiver. 
Moreover, this architecture offers vastly improved 
performance while remaining entirely transparent to the 
end users and fully compatible with the Internet 
infrastructure. In other words, the gateway splits the 
single TCP connection into three separate components: 

1) A TCP connection between the sender and the 
gateway; 

2) A optimized transport protocol connection over 
the satellite between the two gateways; 

3) A TCP connection between the opposite 
gateway and the receiver. 

In this way, the TCP congestion avoidance mechanisms 
persist over the terrestrial connections to protect the 
stability of the routed network and an optimized transport 
protocol allows to reach the maximum bandwidth 
utilization in the satellite segment. Two implementations 
of this concept are described in the following subsections. 

3.3.2 Xpress Transport Protocol (XTP)  

The SkyX system replaces TCP over the satellite link 
with the Xpress Transport Protocol (XTP) designed for 
the long latency, high loss, asymmetric bandwidth 
conditions typical of satellite communications [18][19]. 
The XTP is based on orthogonal protocol functions for 
separating communication paradigm (datagram, virtual 
circuit, transaction, etc.) from the error control policy 
employed, separation of rate and flow control, explicit 
first class for reliable multicast, and data delivery service 
independence. XTP regulates the data flow by end-to-end 
windowing flow control mechanism based on 64-bit 
sequence numbers and a 64-bit sliding window. XTP also 
provides rate control whereby an end-system or 
intermediate system can specify the maximum bandwidth 
and the burst size (maximum number of bytes to be sent 
in a burst of packets) it will accept on a connection. 
Finally, error control incorporates positive and, when 
appropriate, negative acknowledgement to make 
retransmission of missing or damaged data packets. 
Retransmission may be either go-back-N or selective 
retransmission. 

3.3.3 Space Communication Protocol Standard 
(SCPS) 

The “Space Communication Protocol Standards” (SCPS) 
are a set of layered protocols optimized for the space 
segments [20]. The SCPS can be used as an integrated 
protocol stack, or the individual protocols can be used in 

combination with Internet protocols. These protocols 
include: 1) A file handling protocol (SCPS-FP); 2) A 
retransmission control protocol (SCPS-TP); 3) A data 
protection mechanism (SCPS-SP); 4) A scalable 
networking protocol (SCPS-NP). In particular, the SCPS-
TP is based on the Internet Transmission Control 
Protocol (TCP) [21] and User Datagram Protocol (UDP) 
[22], the Internet Host Requirements Document [23], and 
the “TCP Extensions for High Performance” [17]. Then, 
SCPS extensions to these base standards improve 
performance in the space communications. For example, 
SCPS-TP has developed three capabilities to address the 
possibility of data loss due to transmission errors:  

1) Explicit Corruption Response. When a isolated data 
loss occurs, SCPS-TP maintains the transmission rate 
(controlled by the congestion window) and the 
retransmission timeout value unchanged.  

2) Selective Negative Acknowledgement (SNACK). The 
SNACK capability has been developed to identify 
specific data that requires retransmission, and to 
request immediate retransmission of that data.  

3) Header Compression. SCPS-TP defines a header 
compression capability to reduce the size of 
transmitted packets. This scheme is loss-tolerant, 
meaning that the loss of one packet does not render 
subsequent packets unintelligible. 

 
4 OS features impacting TCP performance 

Under ideal conditions, the optimum performances are 
reached when data pipe between a sender and a receiver 
is kept full. Moreover, the maximum amount of data that 
can be in transit in the network are achieved by the 
bandwidth-delay product, that is, the product of the 
bottleneck link bandwidth and Round Trip Time (RTT). 
But, in order to prevent packet loss due buffer overflow, 
the receiver is required to have enough buffer space to 
store all incoming data. For this purpose, TCP 
implements a mechanism called “Advertised Receive 
Window” [1]. Under this scheme, the maximum number 
of bytes, that the sender can transmit, is equal to the free 
space in the receiver buffer. Therefore, the maximum 
transmission rate possible is regulated by the following 
formula: 

Max Transmission Rate = Advertised Receive Window / 
Round Trip Time 

Typically, operative systems limit the amount of memory 
that can be used by an application for buffering network 
data. Without the support of the “Window Scale” option 
[17], the maximum buffer size that can be used by the 
application is limited to 64 kbytes. Then, in order to take 
full advantage of the high speed networks, the host 
system must be configured to support large enough 
socket buffers for reading and writing data in the 
network. Today, typical Unix systems consider a default 
maximum buffer size for the socket between 128 kbytes 
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and 1 Mbyte, but these values may not be sufficient to 
fully utilize the available bandwidth. Thus, to maximize 
the TCP performance on an high speed link, it’s desirable 
to make sure that the host has set appropriately the socket 
buffer. Moreover, it’s worth to enable some TCP options, 
such as “SACK” [10] and “Large Window” [17]. Table 1 
shows the characteristics of the main OS [24]. 

 
5 Simulation scenario 

Simulations have been performed using ns-2 simulator 
[3] which is an object-oriented tool widely adopted to 
reproduce network scenarios. We selected this platform 
due to the reliability of its outcomes and the validity of its 
models, especially in new transport protocols 
investigation. In addition, the open source code allows 
great flexibility. In order to run our tests we used the 
version 2.1b8a. Moreover, we added the code to simulate 
the behavior of TCP Westwood ABSE (Adaptive 
Bandwidth Share Estimation) [25][26][27]. Figure 1 
represents the scenario utilized for the simulations. The 
main simulation parameters are the following: 

o MinRTT = 508 ms; 

o Packet Error Rate (PER) ∈ {0; 10-4; 10-3}; 

o TCP packet size = 1500 bytes; 

o Bandwidth = 4 Mbit/s; 

o Transport protocosl: TCP New Reno, TCP 
Westwood ABSE. 

Moreover, the payload configuration is assumed non-
regenerative. Simulations were performed using different 
combinations of transport protocol and various PER. 

 
6 OS parameters optimization 

In Figure 2 we show the average throughput achieved for 
different combinations of transport protocol, various PER 
in the satellite link and different values for the buffer size 
in the receiver host.  

Table 1: TCP features under various operating systems 

Operating 
System 

RFC1191 
Path MTU 
Discovery 

RFC1323 
Support 

Default 
maximum 

socket 
buffer size 

Default 
TCP socket 
buffer size 

Default UDP 
socket buffer 

size 

Applications 
(if any) which 

are user 
tunable 

BSD/OS Yes Yes 256kbyte 8kbyte 9216 snd 
41600 rcv 

None 

(Compaq) 
Digital Unix 4.0 

* Yes Winscale, 
No Timestamp  

128kbyte 32kbyte 9216 snd 
41600 rcv 

None 

FreeBSD 2.1.5 Yes  Yes 256 kbyte 16kbyte 40kbyte None 

HPUX 
9.{00,01,10,20,

30} 
Yes Yes 256kbyte 32kbyte 9216 FTP 

IBM AIX 3.2 & 
4.1 

No Yes 64kbyte 16kbyte 9216 snd 
41600 rcv 

None 

Linux 2.4.00 or 
later 

Yes Yes 64kbyte 32kbyte * None 

MacOS (Open 
Transport) Yes Yes 

Limited only 
by available 

system 
RAM 

32kbyte 64kbyte 
Fetch (ftp 

client) 

FTP Software 
(Netmanage) 
OnNet Kernel 

4.0 for 
Win95/98 

Yes Yes 963,75MB 

8kbyte 
[146kbyte 

for satellite 
tuning] 

8kbyte snd 
48kbyte rcv FTP server 

Sun Solaris 7 Yes Yes 
1MB TCP, 
256kbyte 

UDP 
8kbyte 8kbyte None 

Microsoft 
Windows NT 

3.5/4.0 
Yes No 64kbyte 

Max(~8kbyt
e,min(4*MS
S,64kbyte)) 

* * 
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Figure 1: Simulation scenario 

In the error free case, TCP Westwood ABSE and TCP 
New Reno have the same trend. In fact, in both cases the 
average throughput grows linearly up to the buffer size 
catches up the data pipe value (~170 packets), and 
remains constant for greater values. Instead, if errors are 
present in the channel, TCP Westwood outperforms New 
Reno. In fact, after the saturation point (buffer size > data 
pipe value) the bandwidth utilization goes from 88,45% 
(with PER = 10-4) to 75,5% (with PER = 10-3) for TCP 
Westwood. On the other hand, New Reno catches up only 
a bandwidth utilization of 29,79% if PER = 10-4, and 
16,24% if PER = 10-3. Finally, Figure 2 shows as TCP 
Westwood trend is more stable for values lower than the 
saturation point. 

 

7 Performance of TCP with different OS 

Simulations results presented in  Figure 3 show the time 
required to transmit a 50 Mbytes file and a 100 Mbytes 
file from a server to a client via a GEO satellite 
considering no error rate. We have considered typical 
default values of “maximum socket buffer size” enabled 
by the commercial operating system: 

o 64 kbyte (i.e. Window NT, Linux 2.4); 

o 128 kbyte (i.e. Digital Unix 4.0); 

o 256 kbyte (i.e. BSD/OS). 

The outcomes show that both New Reno and Westwood 
halve the transfer time when the receive buffer size 
doubles.  

In Figure 4 and Figure 5  we compare the transfer time 
for different combinations of transport protocol, different 
PER (10-4 and 10-3 respectively) and various values of 
receiver buffer size. In presence of errors, Westwood and 
NewReno have different behavior. In fact, since the 
transmission errors affect strongly the New Reno 
performance [9], a greater receive buffer bring a smaller 
reduction of the transfer time. On the other hand, 
Westwood, due to its congestion control algorithm [11], 
performs better in the link with errors, and then halves the 
transfer time when the buffer size doubles. 

Moreover, in both larger receive window and higher error 
rate case, Westwood allows to transmit 100 Mbytes more 
rapidly than NewReno 50 100 Mbytes. 
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Conclusions  

Performance of TCP based applications are limited in 
satellite environment due to the high latency especially 
when large bandwidth is allowed. The paper describes 
and analyze many techniques proposed to improve 
performance. Among the techniques based on flow 
control modification, TCP Westwood shows very good 
performance. Nevertheless, utilizing Westwood with real 
OS the improved performance in some cases can be 
limited by the finite receive buffer size. 

The results show how the increased buffer size offered by 
some OS is exploited to significantly improve 
performance. 
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