
1

The Impact of Efficient Flow Control and OS Features on TCP

Performance over Satellite Links

M. Luglio1, C. Roseti2 and M. Gerla3

1, 2 Dipartimento di Ingegneria Elettronica, Università di Roma Tor Vergata
Via del Politecnico 1, 00133 Rome, Italy

3 Computer Science Department, University of California Los Angeles

Boelter Hall, Los Angeles CA, 90095 USA

Abstract

Transmission Control Protocol is the layer 4 protocol over which over 90% of the Internet applications are based. The high
latency peculiar of satellite links causes severe degradation of performance, especially if high bandwidth is available. In
fact, due to the high Bandwidth Delay Product the pipe requires a long time to fill.

To counteract such impairments many solutions have been proposed and some of them are actually implemented in real
systems. These solutions are based either on the modification of the TCP algorithm, mainly the flow control and the
recovery, or on the architecture, mainly on splitting the connection (eg, PEP – Performance Enhancing Proxies), which may
even include the implementation of proprietary solutions. In both cases, the features of the Operating Systems in the end
machines play a very important role because the size of the available buffer pool determines the initial slow start threshold
and in general limits the performance of the flow control mechanism.

In this paper we describe the main solutions proposed or adopted to improve TCP performance over satellite links and
analyze through simulations their performance with respect to existing OSs. The optimization of the buffer dimension has
been performed too and the main results are presented.

Keywords

Flow control, Operative Systems, Satellite, TCP

Acronyms

ABSE Adaptive Bandwidth Share Estimation

BDP Bandwidth Delay Product
BER Bit Error Rate
FEC Forward Error Correction

FR-FR Fast Retransmit-Fast Recovery
GEO Geosynchronous Earth Orbit
ICMP Internet Control Message Protocol

IP Internet Protocol
LEO Low Earth Orbit
MTU Maximum Transmission Unit

OS Operative System
PEP Performance Enhancing Proxy

RTT Round Trip Time

SACK Selective Acknowledgement
SNACK Selective Negative Acknowledgement
SCPS Space Communication Protocol Standard

SCPS-FP SCPS-File Protocol
SCPS-NP SCPS-Network Protocol
SCPS-SP SCPS-Security Protocol

SCPS-TP SCPS-Transport Protocol
TCP Transmission Control Protocol
VoIP Voice over IP

XTP Xpress Transport Protocol

1 luglio@uniroma2.it (contact author)
2 cesare.roseti@uniroma2.it
3 gerla@cs.ucla.edu

Satellite Communication Letter, Satellite Communication Letter, June 2004June 2004 2

1 Introduction

TCP is the layer 4 protocol which ensures reliable end-to-
end communication implementing the concept of the
acknowledgement of the received data [1]. When the end-
to-end delay is high, as when a satellite link is part of the
path, TCP performance rapidly decrease because the
window takes a very long time to increase as well as the
pipe to be filled. Nevertheless, the satellite assumes a
meaningful role to allow the access to the
telecommunication networks in very remote location and
is irreplaceable where terrestrial infrastructures are scarce
or absent, where it represents the only means to
communicate (long range mobile services, maritime,
aeronautical environment) or when terrestrial
infrastructures may be damaged or out of order due to
disasters.

In order to improve TCP mechanism efficiency over the
satellite links, many solutions can be adopted. Some of
them are specifically proposed for satellite while others
for more general environment [2]. Many proposals are
based on the modification of the flow control (e.g.
enlarging the dimension of the initial window, reducing
the number of acknowledgments), of the recovery
mechanism (dynamic estimation the available bandwidth,
etc.); others are based on the modification of the
architecture (e.g. splitting the path and terminating
connection at each step acknowledging packet reception).
Among the latter typology of solutions some adopt
standard algorithms or a modified version while there are
solutions based on proprietary standard implemented in
real systems.

In any case, both efficient TCP algorithms and a powerful
OS are needed to achieve good performance. In
particular, the finite dimension of the receiving buffer
size is the characteristic of the OS which impacts TCP
performance. This feature is even more important if a
very efficient TCP algorithm is implemented. In fact, the
flow control mechanism aims at regulating the dimension
of the sliding window but even though an efficient TCP
algorithm were able to reach large windows the buffer
length can strongly limit performance.

In this paper we investigate how the two aspects (flow
control and OS features) impact TCP performance in a
scenario including a satellite link as part of the end-to-end
path. The optimization of the buffer size using different
TCP algorithm has been carried out through simulations
performed using ns2 tool [3]. Performance of TCP over
satellite links using different flow control mechanism and
real OS have been carried out too and shown.

In particular, in section 2 performance of TCP in satellite
environment will be analyzed, in section 3 the main
solution to improve performance will be described and
analyzed, in section 4 the features of OS impacting TCP
performance will be highlighted and some real OS will be
shown as examples, in section 5 the simulation scenario
will be described, in section 6 the results of the OS buffer

optimization will be shown and discussed, in section 7
the performance of TCP with different OS using two
different flow control mechanisms will be shown and
finally in the last section conclusions will be drawn.

2 TCP performance over satellite links

Satellite systems can use the geostationary orbit (GEO) or
Low Earth Orbit (LEO). Different satellite architectures
show different performance. In fact, GEO constellation
are characterized by very high delay (RTT � 550 ms)
which can vary in the order of about 20 ms as a function
of the earth station location in the coverage area. In
addition, the great distance implies also high free space
losses which can increase BER. LEO constellation are
characterized by shorter distance with respect to GEO
(RTT � 20 -50 ms) but the variability, depending on
satellite movement, can be greater and more dynamic.
The free space losses are reduced too. In addition,
frequent handover represents a critical aspect that must be
carefully taken into account.

In both cases, the two implications have an impact on
TCP performance [4][4][6][7]. In fact, the higher latency
with respect to terrestrial networks implies that it takes
longer to reach the optimum window size while a higher
packet loss can be experienced as a consequence of the
greater BER in particular channel conditions.
Furthermore, when the satellite provide wide band access
the bandwidth x delay product becomes very large
impacting the ramping time.

To mitigate such impairments several countermeasures
can be implemented both at physical level (mainly to
reduce losses) and at network (including layer 4) level
[2]. In the next section the main solutions proposed or
implemented to improve TCP performance will be
described.

3 Solutions to improve TCP performance

The impairments experienced at TCP level on a satellite
link can be mitigated using different approaches. The
proposed or adopted solutions can be classified as
follows:

1. Lower level approach

2. use of TCP over the satellite link, implementing
modified flow control mechanisms and options.

3. break TCP semantics introducing intermediate nodes
in the network and implementing between the nodes
standard or proprietary solutions.

3.1 Lower Level mitigations

To improve TCP performance on a satellite channel, it is
recommended to use the following two non-TCP
mechanisms: the “Path MTU Discovery” and the
“Forward Error Correction” (FEC) [2][4]. The first

TThe Impact of Efficient Flow Control and OS Features on TCP Performance over Satellite Linkshe Impact of Efficient Flow Control and OS Features on TCP Performance over Satellite Links 3

mechanism determines the maximum packet size a
connection can use on a given link without being subject
to IP fragmentation. In fact, if the packet is too large to be
forwarded, the gateway fragments the packet and
forwards the fragments. Instead, with the Path MTU
discovery mechanism, an ICMP message is returned to
the sender to indicate that the original packet could not be
transmitted without being fragmented and also to report
the largest packet size that can be forwarded by the
gateway. In this way, the packet overhead is reduced and
TCP senders can increase the congestion window more
rapidly (in terms of bytes). On the other hand, the most
important problem for developers of TCP in satellite
network is high Bit Error Rate (BER). TCP’s strategy
considers all packet drops as signals of network
congestion and reduces its window size in an attempt to
alleviate the congestion. Therefore, packets dropped due
to corruption cause TCP to reduce the size of its sliding
window, even though these packet drops not for network
congestion. This reaction is unwanted because it results in
throughput loss. Then, the TCP operates efficiently when
nearly all loss is due to network congestion. To such
purpose, the forward error correction coding (FEC) can
be used to improve the bit-error rate in satellite
environments.

3.2 Modified flow control solutions

3.2.1 Congestion Control: Fast Retransmit and
Fast Recovery.

The fast retransmit and fast recovery (FR-FR) is a
congestion control algorithm that allows to rapidly
recover lost packets [8][9]. In TCP the default mechanism
to detect dropped packets is the timeout. During the
timeout period, new or duplicate packets cannot be sent.
With FR-FR, if the a packet is received out of sequence, a
duplicate acknowledgement is sent to the source. If the
sender receives three duplicate acknowledgements, it
assumes that the corresponding packet is lost and: 1) sets
ssthresh=0,5*cwnd, retransmits the missing packet, sets
cwnd=ssthresh+(3*packet size); 2) each time another
duplicate acknowledgement arrives, set cwnd=cwnd+1
packets and transmits a packet if allowed; 3) when an
acknowledgement arrives for new packets:
cwnd=ssthresh . FR-FR works most efficiently when there
are many isolated packet losses.

3.2.2 Large TCP Windows

The TCP header uses a 16-bit field to report the receiver
window size to the sender. The standard maximum TCP
window size is 65 kbytes and the TCP throughput is
limited by the following formula:

Throughput = window size / RTT

For example, considering a geosynchronous satellite
channel with an RTT of 500 ms the maximum throughput
is limited to:

Throughput = 65535 bytes / 500 ms ~ 1 Mbit/s

Therefore, a single standard TCP connection cannot fully
utilize the bandwidth available on some satellite
channels. To circumvent the problem, the “Window
Scale” option has been defined. Such an option expands
the definition of the TCP window to 32 bits and then uses
a scale factor to carry this 32-bit value in the 16-bit
window field in the TCP header.

3.2.3 Selective Acknowledgements (SACK)

TCP uses a cumulative acknowledgement scheme in
which received segments that are out of sequence are not
acknowledged and the TCP sender can only learn about a
single lost packet per round trip time. This forces the
sender to either wait a RTT to realize if packets are lost,
or to avoid to retransmit segments which have been
correctly received. SACK is a strategy which allows TCP
receivers to inform TCP senders exactly which packets
have arrived, and then to recover more quickly from lost
packets avoiding needless retransmissions [10].

3.2.4 TCP Westwood

The TCP end-to-end control is based on implicit
feedback, such as timeouts, duplicate acknowledgements,
round trip measurements. But, when losses occur, TCP
cannot distinguish between congestion losses and
transmission losses and, interpreting this event always as
a network congestion, activates algorithms which reduce
outgoing data stream. To improve the performance of the
congestion control mechanism, an improvement to the
Fast Recovery algorithm has been proposed, named TCP
Westwood (TCPW), requiring modifications only to the
TCP sender [11][12]. TCPW exploits two basic concepts:
1) the end-to-end estimation of the available bandwidth,
and 2) the use of such estimate to set the slow start
threshold and the congestion window after a packet loss.
Using estimated bandwidth instead of packet loss
feedback allows Westwood to more efficiently utilize
network capacity especially in case of high-bandwidth
and huge-delay.

3.3 Modified architecture solutions

3.3.1 PEPs Performance Enhancing Proxies

To improve the TCP performance on links characterized
by high latency and high bandwidth-delay product,
instead of or in addition to protocol enhancements,
several architectural enhancements, or middleware
techniques have been proposed. This approach has been
generalized to the so-called “Performance Enhancing
Proxy” or PEP [13][14][15][16]. Many PEPs techniques
use a split connection TCP implementation in order to
address a mismatch in TCP capabilities between two end-
systems. For example, a “splitting” scheme involves
segmenting the end-to-end connection into satellite and
non satellite segments. This is useful for filling the
satellite link which has a high bandwidth-delay product
by turning on, for example, appropriated TCP option (i.e.
“window scaling option” [17]). Another PEP technique is
based on “capturing” a TCP connection and intelligently

Satellite Communication Letter, Satellite Communication Letter, June 2004June 2004 4

processing data packets and acknowledgements. This
approach is commonly referred to as “spoofing”.

In the frame of PEP implementation, if a link is
composed by both a terrestrial and a satellite segment, it’s
possible to consider a particular architecture in which a
gateway intercepts the TCP connection from the sender
and converts the data to the optimized protocol for
transmission over the satellite, and another gateway on
the opposite side of the satellite link translates the data
back to TCP for communication with the receiver.
Moreover, this architecture offers vastly improved
performance while remaining entirely transparent to the
end users and fully compatible with the Internet
infrastructure. In other words, the gateway splits the
single TCP connection into three separate components:

1) A TCP connection between the sender and the
gateway;

2) A optimized transport protocol connection over
the satellite between the two gateways;

3) A TCP connection between the opposite
gateway and the receiver.

In this way, the TCP congestion avoidance mechanisms
persist over the terrestrial connections to protect the
stability of the routed network and an optimized transport
protocol allows to reach the maximum bandwidth
utilization in the satellite segment. Two implementations
of this concept are described in the following subsections.

3.3.2 Xpress Transport Protocol (XTP)

The SkyX system replaces TCP over the satellite link
with the Xpress Transport Protocol (XTP) designed for
the long latency, high loss, asymmetric bandwidth
conditions typical of satellite communications [18][19].
The XTP is based on orthogonal protocol functions for
separating communication paradigm (datagram, virtual
circuit, transaction, etc.) from the error control policy
employed, separation of rate and flow control, explicit
first class for reliable multicast, and data delivery service
independence. XTP regulates the data flow by end-to-end
windowing flow control mechanism based on 64-bit
sequence numbers and a 64-bit sliding window. XTP also
provides rate control whereby an end-system or
intermediate system can specify the maximum bandwidth
and the burst size (maximum number of bytes to be sent
in a burst of packets) it will accept on a connection.
Finally, error control incorporates positive and, when
appropriate, negative acknowledgement to make
retransmission of missing or damaged data packets.
Retransmission may be either go-back-N or selective
retransmission.

3.3.3 Space Communication Protocol Standard
(SCPS)

The “Space Communication Protocol Standards” (SCPS)
are a set of layered protocols optimized for the space
segments [20]. The SCPS can be used as an integrated
protocol stack, or the individual protocols can be used in

combination with Internet protocols. These protocols
include: 1) A file handling protocol (SCPS-FP); 2) A
retransmission control protocol (SCPS-TP); 3) A data
protection mechanism (SCPS-SP); 4) A scalable
networking protocol (SCPS-NP). In particular, the SCPS-
TP is based on the Internet Transmission Control
Protocol (TCP) [21] and User Datagram Protocol (UDP)
[22], the Internet Host Requirements Document [23], and
the “TCP Extensions for High Performance” [17]. Then,
SCPS extensions to these base standards improve
performance in the space communications. For example,
SCPS-TP has developed three capabilities to address the
possibility of data loss due to transmission errors:

1) Explicit Corruption Response. When a isolated data
loss occurs, SCPS-TP maintains the transmission rate
(controlled by the congestion window) and the
retransmission timeout value unchanged.

2) Selective Negative Acknowledgement (SNACK). The
SNACK capability has been developed to identify
specific data that requires retransmission, and to
request immediate retransmission of that data.

3) Header Compression. SCPS-TP defines a header
compression capability to reduce the size of
transmitted packets. This scheme is loss-tolerant,
meaning that the loss of one packet does not render
subsequent packets unintelligible.

4 OS features impacting TCP performance

Under ideal conditions, the optimum performances are
reached when data pipe between a sender and a receiver
is kept full. Moreover, the maximum amount of data that
can be in transit in the network are achieved by the
bandwidth-delay product, that is, the product of the
bottleneck link bandwidth and Round Trip Time (RTT).
But, in order to prevent packet loss due buffer overflow,
the receiver is required to have enough buffer space to
store all incoming data. For this purpose, TCP
implements a mechanism called “Advertised Receive
Window” [1]. Under this scheme, the maximum number
of bytes, that the sender can transmit, is equal to the free
space in the receiver buffer. Therefore, the maximum
transmission rate possible is regulated by the following
formula:

Max Transmission Rate = Advertised Receive Window /
Round Trip Time

Typically, operative systems limit the amount of memory
that can be used by an application for buffering network
data. Without the support of the “Window Scale” option
[17], the maximum buffer size that can be used by the
application is limited to 64 kbytes. Then, in order to take
full advantage of the high speed networks, the host
system must be configured to support large enough
socket buffers for reading and writing data in the
network. Today, typical Unix systems consider a default
maximum buffer size for the socket between 128 kbytes

TThe Impact of Efficient Flow Control and OS Features on TCP Performance over Satellite Linkshe Impact of Efficient Flow Control and OS Features on TCP Performance over Satellite Links 5

and 1 Mbyte, but these values may not be sufficient to
fully utilize the available bandwidth. Thus, to maximize
the TCP performance on an high speed link, it’s desirable
to make sure that the host has set appropriately the socket
buffer. Moreover, it’s worth to enable some TCP options,
such as “SACK” [10] and “Large Window” [17]. Table 1
shows the characteristics of the main OS [24].

5 Simulation scenario

Simulations have been performed using ns-2 simulator
[3] which is an object-oriented tool widely adopted to
reproduce network scenarios. We selected this platform
due to the reliability of its outcomes and the validity of its
models, especially in new transport protocols
investigation. In addition, the open source code allows
great flexibility. In order to run our tests we used the
version 2.1b8a. Moreover, we added the code to simulate
the behavior of TCP Westwood ABSE (Adaptive
Bandwidth Share Estimation) [25][26][27]. Figure 1
represents the scenario utilized for the simulations. The
main simulation parameters are the following:

o MinRTT = 508 ms;

o Packet Error Rate (PER) ∈ {0; 10-4; 10-3};

o TCP packet size = 1500 bytes;

o Bandwidth = 4 Mbit/s;

o Transport protocosl: TCP New Reno, TCP
Westwood ABSE.

Moreover, the payload configuration is assumed non-
regenerative. Simulations were performed using different
combinations of transport protocol and various PER.

6 OS parameters optimization

In Figure 2 we show the average throughput achieved for
different combinations of transport protocol, various PER
in the satellite link and different values for the buffer size
in the receiver host.

Table 1: TCP features under various operating systems

Operating
System

RFC1191
Path MTU
Discovery

RFC1323
Support

Default
maximum

socket
buffer size

Default
TCP socket
buffer size

Default UDP
socket buffer

size

Applications
(if any) which

are user
tunable

BSD/OS Yes Yes 256kbyte 8kbyte 9216 snd
41600 rcv

None

(Compaq)
Digital Unix 4.0

* Yes Winscale,
No Timestamp

128kbyte 32kbyte 9216 snd
41600 rcv

None

FreeBSD 2.1.5 Yes Yes 256 kbyte 16kbyte 40kbyte None

HPUX
9.{00,01,10,20,

30}
Yes Yes 256kbyte 32kbyte 9216 FTP

IBM AIX 3.2 &
4.1

No Yes 64kbyte 16kbyte 9216 snd
41600 rcv

None

Linux 2.4.00 or
later

Yes Yes 64kbyte 32kbyte * None

MacOS (Open
Transport) Yes Yes

Limited only
by available

system
RAM

32kbyte 64kbyte
Fetch (ftp

client)

FTP Software
(Netmanage)
OnNet Kernel

4.0 for
Win95/98

Yes Yes 963,75MB

8kbyte
[146kbyte

for satellite
tuning]

8kbyte snd
48kbyte rcv FTP server

Sun Solaris 7 Yes Yes
1MB TCP,
256kbyte

UDP
8kbyte 8kbyte None

Microsoft
Windows NT

3.5/4.0
Yes No 64kbyte

Max(~8kbyt
e,min(4*MS
S,64kbyte))

* *

Satellite Communication Letter, Satellite Communication Letter, June 2004June 2004 6

S e n de r R ec e i ve

r

En d -to -e nd TC P

c onn ecti on

MinR TT = 508 ms
BW = 4 Mbit/s

G E O

S a t el l i t e

Figure 1: Simulation scenario

In the error free case, TCP Westwood ABSE and TCP
New Reno have the same trend. In fact, in both cases the
average throughput grows linearly up to the buffer size
catches up the data pipe value (~170 packets), and
remains constant for greater values. Instead, if errors are
present in the channel, TCP Westwood outperforms New
Reno. In fact, after the saturation point (buffer size > data
pipe value) the bandwidth utilization goes from 88,45%
(with PER = 10-4) to 75,5% (with PER = 10-3) for TCP
Westwood. On the other hand, New Reno catches up only
a bandwidth utilization of 29,79% if PER = 10-4, and
16,24% if PER = 10-3. Finally, Figure 2 shows as TCP
Westwood trend is more stable for values lower than the
saturation point.

7 Performance of TCP with different OS

Simulations results presented in Figure 3 show the time
required to transmit a 50 Mbytes file and a 100 Mbytes
file from a server to a client via a GEO satellite
considering no error rate. We have considered typical
default values of “maximum socket buffer size” enabled
by the commercial operating system:

o 64 kbyte (i.e. Window NT, Linux 2.4);

o 128 kbyte (i.e. Digital Unix 4.0);

o 256 kbyte (i.e. BSD/OS).

The outcomes show that both New Reno and Westwood
halve the transfer time when the receive buffer size
doubles.

In Figure 4 and Figure 5 we compare the transfer time
for different combinations of transport protocol, different
PER (10-4 and 10-3 respectively) and various values of
receiver buffer size. In presence of errors, Westwood and
NewReno have different behavior. In fact, since the
transmission errors affect strongly the New Reno
performance [9], a greater receive buffer bring a smaller
reduction of the transfer time. On the other hand,
Westwood, due to its congestion control algorithm [11],
performs better in the link with errors, and then halves the
transfer time when the buffer size doubles.

Moreover, in both larger receive window and higher error
rate case, Westwood allows to transmit 100 Mbytes more
rapidly than NewReno 50 100 Mbytes.

0

500

1000

1500

2000

2500

3000

3500

4000

0 20 40 60 80 100 120 140 160 180 200
Receiver_Buffer_Size(packets)

A
ve

ra
ge

 T
hr

ou
gh

pu
t

(k
b/

s)

Error Free (NewReno=West.)

NewReno-PER=10^-4

NewReno-PER10^-3

WestwoodABSE-PER=10^-4

WestwoodABSE-PER=10^-3

Figure 2: Receiver buffer optimization

TThe Impact of Efficient Flow Control and OS Features on TCP Performance over Satellite Linkshe Impact of Efficient Flow Control and OS Features on TCP Performance over Satellite Links 7

0

100

200

300

400

500

600

700

800

64 128 256
Receiver Buffer Size (kbyte)

T
ra

ns
fe

r
T

im
e

(s
)

File_Size = 100 Mbyte

File_Size = 50 Mbyte

Figure 3: Transfer delay as a function of the buffer size with no PER

0

100

200

300

400

500

600

700

800

900

64 128 256
Receiver Buffer Size (kbyte)

T
ra

ns
fe

r
T

im
e

(s
)

New_Reno-File_Size=100Mbyte

Westwood _ABSE-File_Size=100Mbyte

New_Reno-File_Size=50Mbyte

Westwood_ABSE-File_Size=50Mbyte

Figure4: Transfer delay as a function of the buffer size with PER 10-4

Satellite Communication Letter, Satellite Communication Letter, June 2004June 2004 8

Conclusions

Performance of TCP based applications are limited in
satellite environment due to the high latency especially
when large bandwidth is allowed. The paper describes
and analyze many techniques proposed to improve
performance. Among the techniques based on flow
control modification, TCP Westwood shows very good
performance. Nevertheless, utilizing Westwood with real
OS the improved performance in some cases can be
limited by the finite receive buffer size.

The results show how the increased buffer size offered by
some OS is exploited to significantly improve
performance.

References

[1] .R Stevens. “TCP/IP Illustrated, vol.1”, Addison
Wesley, Reading, MA, USA,1994.

[2] M. Allman, D. Glover, L. Sanchez, “Enhancing
TCP over Satellite Channels using Standard
Mechanism”, RFC 2488, January 1999.

[3] NS-2 Network Simulator (Ver.2) LBL, URL:
http://www.mash.cs.berkley.edu/ns/

[4] C. Partridge, T. J. Shepard, “TCP/IP Performance
over Satellite Links”, IEEE Network , September-
October 1997, pp. 44-49.

[5] M. Allman, C. Hayes, H. Kruse, S. Osterman, “TCP
Performance over Satellite Links”, 5th Int.
Conference on Telecommunication Systems
Modelling and Design, 1997, pp. 1-13.

[6] M. Gerla, M. Luglio, R. Kapoor, J. Stepanek, F.
Vatalaro, M. A. Vázquez-Castro, “TCP via Satellite
Constellations”, Fourth European Workshop on
Mobile/Personal Satcoms (EMPS 2000), London,
September 2000.

[7] M. Gerla, R. Kapoor, J.Stepanek, P. Loreti, M.
Luglio, F. Vatalaro, M. A. Vazquez-Castro,
“Satellite Systems Performance with TCP-IP
Applications”, Tyrrhenian International Workshop
on Digital Communications, IWDC 2001,
September 17-20, 2001, Taormina, Italy, pp. 76-90.

[8] W. Stevens, "TCP Slow Start, Congestion
Avoidance, Fast Retransmit, and Fast Recovery
Algorithms", RFC 2001, Jan. 1997.

[9] S. Floyd and T. Henderson. “The NewReno
Modification to TCP’s Fast Recovery Algorithm”.
Internet RFC 2582, 1999.

[10] M. Mathis, J. Mahdavi, S. Floyd, A. Romanow,
"TCP Selective Acknowledgment Options", RFC
2018, October 1996.

[11] M. Gerla, M. Sanadidi, R. Wang, A. Zanella, C.
Casetti, S. Mascolo. “TCP Westwood: Congestion
Window Control using Bandwidth Estimation”,
Globecom, San Antonio, Texas, USA, November
2001.

[12] C. Casetti, M. Gerla, S. Mascolo, M. Y. Sanadidi,
and R. Wang, "TCP Westwood: Bandwidth
Estimation for Enhanced Transport over Wireless
Links", In Proceedings of ACM Mobicom 2001, pp
287-297, Rome, Italy, July 16-21 2001.

[13] J. Border, M. Kojo, J. Griner, G. Montenegro, and
Z. Shelby, “Performance Enhancing Proxies”, RFC
3135, June 2001.

0

200

400

600

800

1000

1200

1400

64 128 256

Receiver Buffer Size (kB)

T
ra

ns
fe

r
T

im
e

(s
ec

.)

NewReno-File_Size=100MB Westwood_ABSE-File_Transfer=100MB

NewReno-File_Transfer=50MB Westwood_ABSE-File_Transfer=50MB

Figure 5: Transfer delay as a function of the buffer size with PER 10-3

TThe Impact of Efficient Flow Control and OS Features on TCP Performance over Satellite Linkshe Impact of Efficient Flow Control and OS Features on TCP Performance over Satellite Links 9

[14]] M. Luglio, J. Stepanek and M. Gerla, “TCP
Performance using Splitting over Satellite Link”, 8th
Ka Band Utilization Conference, September 25-27,
2002, Baveno, Italy, pp 45-52.

[15] J. Stepanek, A. Razdan, A. Nandan, M. Gerla, M.
Luglio, “The use of a Proxy on Board the Satellite
to Improve TCP Performance”, In Proceeding of
IEEE Global Telecommunications Conference
(GLOBECOM’02).

[16] . Luglio, M.Y. Sanadidi, M. Gerla, and J. Stepanek,
“On-Board Satellite ‘Split TCP’ Proxy”.

[17] V. Jacobson, R. Braden, D. Borman, “TCP
Extensions for High Performance”, RFC 1323, May
1992.

[18] http://www.ca.sandia.gov/xtp/

[19] http://www.mentat.com/skyx/skyx-whitepaper.html

[20] http://www.scps.org

[21] J. Postel. “Transmission Control Protocol”. Internet
RFC 2140, 1981.

[22] J. Postel. “User Datagram Protocol“, RFC 768,
August 1980.

[23] R, Braden. “Requirements for Internet Hosts”, RFC
1122, October 1989.

[24] http://www.psc.edu/networking/perf_tune.html

[25] M. Gerla, M.Y. Sanadidi, and R. Wang, “Adaptive
Bandwidth Share Estimation in TCP Westwood”, to
appear in Globecom 2002, Taipei, Taiwan.

[26] M. Gerla, M.Y. Sanadidi, R. Wang, A. Zanella, C.
Casetti, S. Mascolo, “TCP Westwood: Congestion
Window Control Using Bandwidth Estimation”.

[27] TCP Westwood modules for ns-2:
http://www1.tcl.polito.it/casetti/tcp-westwood

[28] V. Bharadwaj1, J. Baras and N. Butts, “An
architecture for Internet service via broadband
satellite networks”, Int. J. Satell. Commun. vol. 19,
2001, pp. 29-50.

[29] M. Allman, S. Floyd and C. Partridge, “Increasing
TCP's initial window,” IETF Internet Draft: draft-
ietf-tsvwg-initwin-00.txt, May 2001.

[30] M. Allman (editor), "Ongoing TCP Research
Related to Satellites", RFC 2760, Feb. 2000.

[31] M. Allman and D. Glover. “Enhancing TCP Over
Satellite Channels using Standard Mechanisms”,
IETF draft, January 1998.

Author Biography

Luglio Miche le received the Laurea degree in
Electronic Engineeting at University of Rome 'Tor
Vegata'. He received the Ph.D. degree in
telecommunications in 1994 at University of Rome 'Tor
Vegata'.

From August to December 1992 he worked, as visiting
Staff Engineering at Microwave Technology and Systems
Division of Comsat Laboratories (Clarksburg, Maryland,
USA).
He received the Young Scientist Award from ISSSE '95.
Since October 1995 he is research and teaching assistant
at University of Rome "Tor Vergata" where he work on
designing satellite system for multimedia services both
mobile and fixed, in the frame of projects funded by EC
and ESA.
He taught Signal Theory and collaborated in teaching
Digital Signal Processing and Elements of
Telecommunications.
In 2001 and 2002 he taught Satellite Network class at
University of California Los Angeles (UCLA) Computer
Science Department. Now he teaches Signals &
Transmission and Satellite Telecommunications.

"Cesare Roseti is a Ph.D student in the Electronic
Engineering department at the University of Rome “Tor
Vergata”. He received his graduate degree (1st level),
cum laude, in Telecommunication Engineering in 2002
and his graduate degree (2nd level), cum laude, in
Telecommunication Engineering in 2003, both from
University of Rome “Tor Vergata”. His current research
interests are in the analysis of transport protocols in
satellite environments."

Mario Gerla received a graduate degree in engineering
from the Politecnico di Milano in 1966, and the M.S. and
Ph.D. degrees in engineering from UCLA in 1970 and
1973, respectively. After working for Network Analysis
Corporation from 1973 to 1976, he joined the Faculty of
the Computer Science Department at UCLA where he is
now Professor. His research interests cover the
performance evaluation, design and control of distributed
computer communication systems; high speed computer
networks; wireless LANs, and;ad hoc wireless networks.
He has worked on the design, implementation and testing
of various wireless ad hoc network protocols (channel
access, clustering, routing and transport) within the
DARPA WAMIS, GloMo projects. Currently he is
leading the ONR MINUTEMAN project at UCLA, and is
designing a robust, scalable wireless ad hoc network
architecture for unmanned intelligent agents in defense
and homeland security scenarios. He is also conducting
research on QoS routing, multicasting protocols and TCP
transport for the Next Generation Internet (see
www.cs.ucla.edu/NRL for recent publications). He
became IEEE Fellow in 2002. Í

